Your browser lacks required capabilities. Please upgrade it or switch to another to continue.
Loading…
@@.header;
!! Divination using a Single Card
Previous: [[Alternative Spread|1A]], [[Shuffle again.|Shuffle and Spreads]]
Next: [[Step 1: Shuffle|Card1 Shuffle]]
@@
Divination while using a single Card Spread can be simple or complex. Here's a technique suggested by [[The Random Writer|https://ultimatetarot.blogspot.com/2012/05/tarot-cards-one-card-tarot-spread.html]] which involves extensive interactions with the Cards:
Step 1: [[Shuffle the Cards.|Card1 Shuffle]] <<if $l1Shuffle>> Completed. <</if>>
Step 2: [[Cut the Cards into 3 stacks.|Card1 Cut]] <<if $l1Cut>> Completed. <</if>>
Step 3: [[Choose the appropriate stack.|Card1 Choose Stack]] <<if $l1Choose>> Completed. <</if>>
Step 4: [[Shuffle that stack.|Card1 Shuffle Stack]] <<if $l1StackShuffled>> Completed. <</if>>
Step 5: [[Choose your Card.|Card1 Choose Card]] <<if $l1ChoseCard>> Completed. <</if>>
Step 6: [[Read the resulting "Spread."|Card1 Spread]]
@@.footer;
Previous: [[Alternative Spread|1A]], [[Shuffle again.|Shuffle and Spreads]]
Next: [[Step 1: Shuffle|Card1 Shuffle]].
@@@@.header;
!! Shuffling for a Single Card Reading
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 2: Cut|Card1 Cut]].
@@
<<include "Do1Shuffle">>
@@.footer;
Previous:[[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 2: Cut|Card1 Cut]].
@@/* Step 1: Shuffle the Cards */
<<set $l1Shuffle to true>>
<<set $l1Cut = false>>
<<set $l1Choose = false>>
<<set $l1StackShuffled = false>>
<<set $l1ChoseCard = false>>
<<include "DoShuffle">>@@.header;
!! Cut the Cards for a Single-Card Spread
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 3: Choose Stack|Card1 Choose Stack]].
@@
<<include "Do1Cut">>
@@.footer;
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 3: Choose Stack|Card1 Choose Stack]].
@@<<if !$l1Shuffle>> <<include "Do1Shuffle">> <</if>>
----
!!!! Step 2: Cut the Cards into 3 stacks.
<<set $l1Cut = true>>
<<set $l1Choose = false>>
<<set $l1StackShuffled = false>>
<<set $l1ChoseCard = false>>
Cards before cut:
<<for _i=0; _i<4; _i++>>
<<nobr>>
/* show each of 4 rows just for ease of reading */
<<set _jstart = _i*20>>
<<for _j=_jstart; _j<_jstart+20; _j++>>
<<set _nextCard = $cardN[_j]>>
<<if _nextCard != undefined>>
<<print _nextCard +", ">>
<</if>>
<</for>>
<</nobr>>
<</for>>
<<set _upperCut = random(10,60)>>
<<set _cutP5 = _upperCut + 5>>
<<set _lowerCut = random(_cutP5,70)>>
/*<<set _cutN = 40>> */
Lower cut at <<print _lowerCut>>.
<<nobr>>
<<set $topStack = []>>
<<set $middleStack = []>>
<<set $bottomStack = []>>
<<set _iCard = 0>>
<<for _j=_lowerCut; _j<78; _j++>>
<<set $bottomStack[_iCard] = $cardN[_j]>>
<<set _iCard++>>
<</for>>
<</nobr>>
Bottom Stack:
<<print $bottomStack>>
Upper cut at <<print _upperCut>>.
<<nobr>>
<<set _iCard = 0>>
<<for _j=_upperCut; _j<_lowerCut; _j++>>
<<set $middleStack[_iCard] = $cardN[_j]>>
<<set _iCard++>>
<</for>>
<</nobr>>
Middle Stack:
<<print $middleStack>>
<<nobr>>
<<set _iCard = 0>>
<<for _j=0; _j<_upperCut; _j++>>
<<set $topStack[_iCard] = $cardN[_j]>>
<<set _iCard++>>
<</for>>
<</nobr>>
Top Stack:
<<print $topStack>>@@.header;
!! Choose a Stack
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 4: Shuffle stack|Card1 Shuffle Stack]].
@@
<<include "Do1Choose">>
@@.footer;
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]]
Next: [[Step 4: Shuffle stack|Card1 Shuffle Stack]].
@@<<if !$l1Cut>> <<include "Do1Cut">> <</if>>
<<if $l1Cut>>
<<set $l1StackShuffled = false>>
<<set $l1ChoseCard = false>>
----
!!!! Step 3: Choose the appropriate stack.
Please deliberate carefully.
Choose the Stack which calls out to you.
----
<<set $l1Choose = false>> \
<<set $StackChoice1 = undefined>>
<table>
<tr>
<td style="text-align:center">
<<link "Bottom Stack" "Stack1 BS" >> <</link>>
/* <<print $bottomStack>> */
[img[card_stack_cropped_400][Stack1 BS]]
</td>
<td style="text-align:center">
<<link "Middle Stack" "Stack1 MS">> <</link>>
/* <<print $middleStack>> */
[img[card_stack_cropped_400][Stack1 MS]]
</td>
<td style="text-align:center">
<<link "Top Stack" "Stack1 TS">> <</link>>
/* <<print $topStack>> */
[img[card_stack_cropped_400][Stack1 TS]]
</td>
</tr>
</table>
<</if>>@@.header;
!! Are you sure?
@@
You have chosen the Bottom Stack.
<<set $StackChoice1 = $bottomStack>>
<<include "Stack1 YN">>Are you sure that's the one you want?
<<link "Yes" "Single Card">> <<set $l1Choose = true>> <</link>>
<<link "No" "Card1 Choose Stack">> <</link>>@@.header;
!! Are you sure?
@@
You have chosen the Middle Stack.
<<set $StackChoice1 = $middleStack>>
<<include "Stack1 YN">>@@.header;
!! Are you sure?
@@
You have chosen the Top Stack.
<<set $StackChoice1 = $topStack>>
<<include "Stack1 YN">>@@.header;
!! Shuffle Stack
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]].
Next: [[Step 5: Choose card|Card1 Choose Card]]
@@
<<include "Do1ShuffleStack">>
@@.footer;
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]].
Next: [[Step 5: Choose card|Card1 Choose Card]]
@@<<if !$l1Choose>> <<include "Do1Choose">> <</if>>
<<if $l1Choose>>
<<set $l1StackShuffled = true>>
<<set $l1ChoseCard = false>>
Step 4: Shuffle the chosen stack.
Before the shuffle:
<<print $StackChoice1>>
<<set $StackChoice1.shuffle()>>
After the shuffle:
<<print $StackChoice1>>
<</if>>@@.header;
!! Pick a card
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]].
Next: [[Step 6: View Spread.|Card1 Spread]]
@@
<<include "Do1ChooseCard">>
@@.footer;
Previous: [[Single Card Divination|Single Card]], [[Alternative Spread|1A]], [[Original Shuffle|Shuffle and Spreads]].
Next: [[Step 6: View Spread.|Card1 Spread]]
@@<<if !$l1StackShuffled>> <<include "Do1ShuffleStack">> <</if>>
<<if $l1StackShuffled>>
<<set $l1ChoseCard = false>>
Pick a card, any card. (//I.e.// Click on the stack.)
/*<<link "[img[cards_spread]]" "Card1 Choose Card">> */
<<link "[img[cards_spread]]" "Card1 Spread">>
<<set $Choice1=$StackChoice1.pluck()>>
<</link>>
<<if def $Choice1>>
<<set $l1ChoseCard = true>>
Choice = <<print $Choice1>>
<</if>>
<</if>>@@.header;
!! Single Card "Spread"
[[Translation|Card1 Translate]] \
--- Back to [[Single Card Divination|Single Card]] \
--- Choose [[Alternative Spread|1A]]
@@
<<include "Do1Spread">>
@@.footer;
[[Translation|Card1 Translate]] \
--- Back to [[Single Card Divination|Single Card]] \
--- Choose [[Alternative Spread|1A]]
@@<<if !$l1ChoseCard>> <<include "Do1ChooseCard">> <</if>>
<<if $l1ChoseCard>>
!!!! Step 5: View the "Spread"
<center>Upright might mean "Yes" and reversed mean "No",
but be sure to consider the Card's meanings.</center>
----
/* <<print $Choice1>> */ \
<<set _myNcard = $Choice1>> \
<<set _myAngle = $angle[$Choice1] >> \
<center>
<<linkCard _myNcard showCard _myAngle >>
</center>
<</if>>@@.header;
!! Translation of the Single Card "Spread"
Back to [[Single Card "Spread"|Card1 Spread]] \
--- Back to [[Single Card Divination|Single Card]] \
--- Choose [[Alternative Spread|1A]]
@@
<<nobr>>
/*<<print $Choice1>> */
<<set _myNcard = $Choice1>>
<<set _myAngle = $angle[$Choice1] >>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<</nobr>> <<include _txt >>
@@.footer;
Back to [[Single Card "Spread"|Card1 Spread]] \
--- Back to [[Single Card Divination|Single Card]] \
--- Choose [[Alternative Spread|1A]]
@@@@.header;
!! Shuffle Pile of 35 Cards
[[Shuffle again|35Shuffle]] -- [[Alternative Spread|6x7 Section 8]]
<<return>>
@@
<<include "Do35Shuffle">>
@@.footer;
[[Shuffle again|35Shuffle]] -- [[Alternative Spread|6x7 Section 8]]
<<return>>
@@<<if ($Rep6x7 neq 1) and ($Rep6x7 neq 2) >>
Sorry: the "Alternative" 6x7 Reading must be completed before the 35 Card Method can be used. In particular, the Querant's Representative Card must have been chosen. That step removes a card from the undealt pile of cards.
<<include "FindRep">> <</if>>
<<nobr>>
<<if $l35Cut>> (Undoing later steps which were done previously.) <</if>>
<<set $l35Shuffle = true>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</nobr>>
----
!!! Step 10: Shuffle Pile of 35 Cards.
Initial Pile:
<<print $undealtPile>>
<<set $undealtPile.shuffle()>>
Shuffled Pile:
<<print $undealtPile>>@@.header;
<<return>>
@@
<<include "Do35Cut">>
@@.footer;
<<return>>
@@<<if !$l35Shuffle>> <<include "Do35Shuffle">> <</if>>
<<nobr>>
<<if $l35Layout>> (Undoing later steps which were done previously.) <</if>>
<<set $l35Cut = true>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</nobr>>
----
!!! Step 11: Performing Cut.
Pile before cut:
<<print $undealtPile>>
<<set _cutN = random(5,30)>>
Cutting with <<print _cutN>> cards in the top cut.
<<nobr>>
<<set _topCut = []>>
<<set _bottomCut = []>>
<<set _iCut = 0>>
<<for _j=0; _j<_cutN; _j++>>
<<set _topCut[_j] = $undealtPile[_iCut]>>
<<set _iCut++>>
<</for>>
<<set _tCut = 0>>
<<for _j=_cutN; _j<35; _j++>>
<<set _bottomCut[_tCut] = $undealtPile[_j]>>
<<set _tCut++>>
<</for>>
<</nobr>>
Top cut = <<print _topCut>>
Bottom cut = <<print _bottomCut>>
<<nobr>>
<<set _nCpy = 0>>
/* regenerate Pile from cuts */
<<set $undealtPile = []>>
<<set $undealtPile = _bottomCut.concat(_topCut) >>
<</nobr>>
Pile after cut:
<<print $undealtPile>>@@.header;
Laying out the 6 Packets
<<return>>
@@
<<include "Do35Layout">>
@@.footer;
<<return>>
@@<<if !$l35Cut>> <<include "Do35Cut">> <</if>>
<<set $l35Layout = true>>
----
!!! Step 12: Lay out the 35 Cards in 6 Packets
The undealt pile:
<<print $undealtPile>>
<<nobr>>
<<set $l35Spread = false>>
<<set $Packet35_I = []>>
<<set $Packet35_II = []>>
<<set $Packet35_III = []>>
<<set $Packet35_IV = []>>
<<set $Packet35_V = []>>
<<set $Packet35_VI = []>>
<</nobr>>
The resulting packets:
<<nobr>>
<<set _nCard = 0>>
<<for _i=6; _i>=0; _i-->>
<<set $Packet35_I[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet I: <<print $Packet35_I >>
<</nobr>>
<<nobr>>
<<for _i=5; _i>=0; _i-->>
<<set $Packet35_II[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet II: <<print $Packet35_II >>
<</nobr>>
<<nobr>>
<<for _i=4; _i>=0; _i-->>
<<set $Packet35_III[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet III: <<print $Packet35_III >>
<</nobr>>
<<nobr>>
<<for _i=3; _i>=0; _i-->>
<<set $Packet35_IV[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet IV: <<print $Packet35_IV >>
<</nobr>>
<<nobr>>
<<for _i=1; _i>=0; _i-->>
<<set $Packet35_V[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet V : <<print $Packet35_V >>
<</nobr>>
<<nobr>>
<<for _i=0; _i<11; _i++>>
<<set $Packet35_VI[_i] = $undealtPile[_nCard]>>
<<set _nCard++>>
<</for>>
Packet VI: <<print $Packet35_VI >>
<</nobr>>@@.header;
!! The Spread of 35 Cards
Previous: [[Explanation|6x7 Section 9]], Next: [[Translation|35Translate]]
@@
<<if !$l35Layout>> <<include "Do35Layout">> <</if>>
<<set $l35Spread = true>>
<<include "Do35Spread">>
@@.footer;
Previous: [[Explanation|6x7 Section 9]], Next: [[Translation|35Translate]]
@@----
!!! Step 13: Read the 35 Card Spread
These cards should all be read from left to right, beginning with the uppermost line.
----
<<nobr>>
<span id="first"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The First Line'' stands for the house, the environment and so forth.
<<print $Packet35_I>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Packet35_I[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
----
<<nobr>>
<span id="second"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The Second Line'' stands for the person or subject of the divination.
<<print $Packet35_II>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Packet35_II[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
----
<<nobr>>
<span id="third"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The Third Line'' stands for what is passing outside, events, persons, etc.
<<print $Packet35_III>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Packet35_III[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
----
<<nobr>>
<span id="fourth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The Fourth Line'' stands for a surprise, the unexpected, etc.
<<print $Packet35_IV>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Packet35_IV[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
----
<<nobr>>
<span id="fifth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The Fifth Line'' stands for consolation, and may moderate all that is unfavorable in the preceding lines.
<<print $Packet35_V>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Packet35_V[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
----
<<nobr>>
<span id="sixth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<</nobr>>
''The Sixth Line'' is that which must be consulted to elucidate the enigmatic oracles of the others; apart from them it has no importance.
<<print $Packet35_VI>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<11; _i++>>
<td>
<<set _myNcard = $Packet35_VI[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>><span id="top"></span>
@@.header;
!! Translation of the 35 Card Spread
Previous: [[Spread|35Spread]], [[Explanation|6x7 Section 9]]
@@
<<nobr>>
<span id="first"></span>
Scroll to the apropriate line:
<<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
<<silently>>
<<include "init ncards">>
<</silently>>
''The First Line'' stands for the house, the environment and so forth.
----
<<nobr>>
<<for _i=0; _i<7; _i++>>
<<set _lclCard = $Packet35_I[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="second"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
''The Second Line'' stands for the person or subject of the divination.
----
<<nobr>>
<<for _i=0; _i<6; _i++>>
<<set _lclCard = $Packet35_II[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="third"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
''The Third Line'' stands for what is passing outside, events, persons, etc.
----
<<nobr>>
<<for _i=0; _i<5; _i++>>
<<set _lclCard = $Packet35_III[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="fourth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
''The Fourth Line'' stands for a surprise, the unexpected, etc.
----
<<nobr>>
<<for _i=0; _i<4; _i++>>
<<set _lclCard = $Packet35_IV[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="fifth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
''The Fifth Line'' stands for consolation, and may moderate all that is unfavorable in the preceding lines.
----
<<nobr>>
<<for _i=0; _i<2; _i++>>
<<set _lclCard = $Packet35_V[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="sixth"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
''The Sixth Line'' is that which must be consulted to elucidate the enigmatic oracles of the others; apart from them it has no importance.
----
<<nobr>>
<<for _i=0; _i<11; _i++>>
<<set _lclCard = $Packet35_VI[_i]>>
/* <<print _lclCard + ", ">> */
<<set _myNcard = _lclCard>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_lclCard] >>
/* <<print _myAngle + ". ">> */
/* <<linkCard _myNcard showCard _myAngle >> */
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</for>>
<</nobr>>
----
<<nobr>>
<span id="bottom"></span>
Scroll to the apropriate line: <<link "first">><<ScrollTo "first">><</link>>,
<<link "second">><<ScrollTo "second">><</link>>,
<<link "third">><<ScrollTo "third">><</link>>,
<<link "fourth">><<ScrollTo "fourth">><</link>>,
<<link "fifth">><<ScrollTo "fifth">><</link>>,
<<link "sixth">><<ScrollTo "sixth">><</link>>.
<<link "top">><<ScrollTo "top">><</link>>,
<<link "bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
<<include "Any Recurrences">>
@@.footer;
Previous: [[Spread|35Spread]], [[Explanation|6x7 Section 9]]
@@The reader may either select each of the steps described below, manually performing them in order, or select any step which is of interest. In the latter case, all necessary preceding steps will be performed automaticaly.
If one of the automated steps requires the reader to make a choice, the automatic process will stop at that step. After the choice has been made, the reader will have to re-select the desired step. The automatic procedure will not continue on its own.
At any time, the reader may <<link "restart" "6x7 Section 8">> <<include "6x7ReInit">><</link>> this Reading from scratch.@@.header;
!! An Alternative Method of Reading the Tarot Cards
by L. W. de Laurence (1918)
Previous: [[Shuffle and Spreads]], Next: [[35 Card Method|6x7 Section 9]].
@@
<<hidden "View this Reading's operational notes." "OpNotes" >>
<<link "Restart this Reading." "6x7 Section 8">> <<include "6x7ReInit">><</link>>
----
This method is recommended when no definite question is asked---that is, when the Querent wishes to learn generally concerning the course of his life and destiny. If he wishes to know what may befall within a certain time, this time should be clearly specified before the cards are shuffled.
When the reading is over, it may happen that something remains doubtful, or it may be desired to carry the question further, which is done by using the method of reading the pile of 35 cards.
Step 10: [[Read 35 Card Pile|6x7 Section 9]]
----
Shuffle the entire pack and turn some of the cards round, so as to invert their tops.
Step 1: [[Shuffle (new spread)|6x7 Shuffle 1]] \
<<if $lShuffle>> Completed. <</if>>
Let them be cut by the Querent with his left hand.
Step 2: [[Cut|6x7 Cut]] <<if $lCut>> Completed. <</if>>
Deal out the first forty-two cards in six packets of seven cards each, face upwards, so that the first seven cards form the first packet, the following seven the second, so on---as in the following diagram:---
Step 3: [[First Deal|6x7 Deal 1]] <<if $lDeal1>> Completed. <</if>>
<center>[img[159a]]</center>
Take up the first packet; lay out the cards on the table in a row, from right to left; place the cards of the second packet upon them and then the packets which remain. You will thus have seven new packets of six cards each, arranged as follows---
Step 4: [[Second Deal|6x7 Deal 2]] <<if $lDeal2>> Completed. <</if>>
<center>[img[159b]]</center>
Take the top card of each packet, shuffle them and lay out from right to left, making a line of seven cards.
Step 5: [[First Layout|6x7 Layout 1]] <<if $lLayout1>> Completed. <</if>>
Then take up the two next cards from each packet, shuffle and lay them out in two lines under the first line.
Step 6: [[Second Layout|6x7 Layout 2]] <<if $lLayout2>> Completed. <</if>>
Take up the remaining twenty-one cards of the packets, shuffle and lay them out in three lines below the others.
Step 7: [[Third Layout|6x7 Layout 3]] <<if $lLayout3>> Completed. <</if>>
You will thus have six horizontal lines of seven cards each, arranged after the following manner.
Step 8: [[View the Spread|6x7 Spread]] <<if $lSpread>> Viewed. <</if>>
<center>[img[160][6x7 Spread]]</center>
<center>[[View the Spread|6x7 Spread]]</center> <<if $lSpread>> Viewed. <</if>>
In this method, the Querent---if of the male sex---is represented by the Magician, and if female by the High Priestess; but the card, in either case, is not taken from the pack until the forty-two cards have been laid out, as above directed. If the required card is not found among those placed upon the table, it must be sought among the remaining thirty-six cards, which have not been dealt, and should be placed a little distance to the right of the first horizontal line. On the other hand, if it is among them, it is also taken out, placed as stated, and a card is drawn haphazard from the thirty-six cards undealt to fill the vacant position, so that there are still forty-two cards laid out on the table.
Step 9: [[Locate Representative|6x7 Locate Representative]] \
<<if def $Rep6x7>> Completed. <</if>>
The cards are then read in succession, from right to left throughout, beginning at card No. 1 of the topline, the last to be read being that on the extreme left, or No. 7, of the bottom line.
[[View the Spread|6x7 Spread]]
----
When the reading is over, it may happen that something remains doubtful, or it may be desired to carry the question further, which is done by using the method of reading the pile of 35 cards.
Step 10: [[Read 35 Card Pile|6x7 Section 9]]
@@.footer;
Previous: [[Shuffle and Spreads]], Next: [[35 Card Method|6x7 Section 9]].
@@@@.header;
!! The Method of Reading by Means of Thirty-Five Cards
by L. W. de Laurence (1918)
Previous: [[Alternative Method|6x7 Section 8]], Next: [[Credits]].
@@
When the reading is over, according to the scheme set forth in the [[last method|6x7 Section 8]], it may happen---as in the previous case---that something remains doubtful, or it may be desired to carry the question further, which is done as follows:
Take up the undealt cards which remain over, not having been used in the first operation with 42 cards. The latter are set aside in a heap, with the Querent, face upwards, on the top. The thirty-five cards, being shuffled and cut as before, are divided by dealing into six packets thus:---
Step 10: [[Shuffle the Pile|35Shuffle]] <<if $l35Shuffle>> Completed. <</if>>
Step 11: [[Cut the Cards|35Cut]] <<if $l35Cut>> Completed. <</if>>
//Packet I// consists of the first ''Seven Cards''; //Packet II// consists of the ''Six Cards'' next following in order; //Packet III// consists of the ''Five Cards'' following; //Packet IV// contains the next ''Four Cards''; //Packet V// contains ''Two Cards''; and //Packet VI// contains the last ''Eleven Cards''. The arrangement will then be as follows:---
<center>[img[163][35Layout]]</center>
<center>Step 12: [[Layout the Cards|35Layout]] <<if $l35Layout>> Completed. <</if>></center>
Take up these packets successively; deal out the cards which they contain in six lines, which will be necessarily of unequal length.
Step 13: [[Read the Spread|35Spread]] <<if $l35Spread>> Completed. <</if>>
* ''The First Line'' stands for the house, the environment and so forth.
* ''The Second Line'' stands for the person or subject of the divination.
* ''The Third Line'' stands for what is passing outside, events, persons, etc.
* ''The Fourth Line'' stands for a surprise, the unexpected, etc.
* ''The Fifth Line'' stands for consolation, and may moderate all that is unfavorable in the preceding lines.
* ''The Sixth Line'' is that which must be consulted to elucidate the enigmatic oracles of the others; apart from them it has no importance.
These cards should all be read from left to right, beginning with the uppermost line.
-- L. W. de Laurence (1918)
@@.footer;
Previous: [[Alternative Method|6x7 Section 8]], Next: [[Credits]].
@@<<set $lInit = undefined>>
<<set $lShuffle = undefined>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $Rep6x7 = undefined>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>@@.header;
!! 6x7 Shuffle 1
@@
<<include "DoShuffle">>
@@.footer;
<<return>>
[[Shuffle again|6x7 Shuffle 1]]
@@!!! Step 1: Shuffling the cards ... \
<<nobr>>
<<if $lCut>> (Undoing later steps which were done previously.) <</if>>
<<silently>>
/* initialize the state of each of the steps which generate
* the 6x7 and 35 Card Spreads
*/
<<if $lInit is undefined>> <<include "DoInit">> <</if>>
<<if $lShuffle>>
!!! Reshuffling cards for 6x7 Spread.
<</if>>
<<set $lShuffle = true>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
/* for each of the displayed cards */
/* initialize index array of pointers into arrays of available card faces
* set limit to total number of available "upright" card faces,
* 22 = 22 Major Arcana
* 14*4 = 56 Minor Arcana
* ttl = 78
*/
<<set _index to []>>
<<for _i to 0; _i <=77; _i++>>
<<set _index[_i] to _i>>
<</for>>
...Index array initialized....
<<set $reversed to []>>
<<set $cardN to []>>
<<set $psgRandomText to []>>
/* all 78 cards will be used (eventually) */
<<for $j=0; $j<=77; $j++>>
<<print "j = " + $j>>
<<if random(0,1) === 0>>
<<set $reversed[$j] = "Upright">>
<<set $angle[$j] = 0 >>
<<else>>
<<set $reversed[$j] = "Reversed">>
<<set $angle[$j] = 180 >>
<</if>>
<<print "reversed[j] = " + $reversed[$j]>>
/* fetch a random card number from the index */
<<set $nRandom = _index.pluck()>>
<<print "nRandom = " + $nRandom>>
<<set $card[$j] = $cardPic[$nRandom] >>
<<print "card[j] = " + $card[$j]>>
<<set $cardN[$j] = $nRandom>>
<<set $psgRandom[$j] = $cardPsg[$nRandom] + "_" + $reversed[$j]>>
<<print "psgRandom[j] = " + $psgRandom[$j]>>
<<set $psgRandomText[$j] = $cardPsg[$nRandom] + "_Text_" + $reversed[$j]>>
<<print "psgRandomText[j] = " + $psgRandomText[$j]>>
<</for>>
<</silently>><</nobr>> Shuffled.
Cards:
<<for _i=0; _i<4; _i++>>
<<nobr>>
<<set _jstart = _i*20>>
/* <<print "jstart= " + _jstart>>
*/
<<for _j=_jstart; _j<_jstart+20; _j++>>
<<set _nextCard = $cardN[_j]>>
<<if _nextCard != undefined>>
/* <<print _j + ": " + _nextCard +", ">>
*/ <<print _nextCard +", ">>
<</if>>
<</for>>
<</nobr>>
<</for>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Cut
<<return>>
[[Cut again|6x7 Cut]]
@@
<<include "DoCut">>
@@.footer;
<<return>>
[[Cut again|6x7 Cut]]
@@<<nobr>>
<<if $lShuffle is undefined >> <<include "DoShuffle">> <</if>>
<<if $lCut>>
Re-cutting Cards.
<<if $lDeal1>>
(Undoing later steps which were previously done.)
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $Rep6x7 = undefined>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</if>>
<</if>>
<<set $lCut = true>>
<</nobr>>
----
!!! Step 2: Performing Cut.
Cards before cut:
<<for _i=0; _i<4; _i++>>
<<nobr>>
/* show each of 4 rows just for ease of reading */
<<set _jstart = _i*20>>
<<for _j=_jstart; _j<_jstart+20; _j++>>
<<set _nextCard = $cardN[_j]>>
<<if _nextCard != undefined>>
<<print _nextCard +", ">>
<</if>>
<</for>>
<</nobr>>
<</for>>
<<set _cutN = random(10,68)>>
/*<<set _cutN = 40>> */
Cutting at <<print _cutN>>
<<nobr>>
<<set _topCut = []>>
<<set _bottomCut = []>>
<<set _iCut = 0>>
<<for _j=0; _j<_cutN; _j++>>
<<set _topCut[_j] = $cardN[_iCut]>>
<<set _iCut++>>
<</for>>
<</nobr>>
topCut = <<print _topCut>>
<<nobr>>
<<set _bCut = 0>>
<<for _j=_cutN; _j<78; _j++>>
<<set _bottomCut[_bCut] = $cardN[_j]>>
<<set _bCut++>>
<</for>>
<</nobr>>
bottomCut = <<print _bottomCut>>
<<set $cardN = []>> \
<<set $cardN = _bottomCut.concat(_topCut)>> \
Cards after cut:
<<for _i=0; _i<4; _i++>>
<<nobr>>
/* show each of 4 rows just for ease of reading */
<<set _jstart = _i*20>>
<<for _j=_jstart; _j<_jstart+20; _j++>>
<<set _nextCard = $cardN[_j]>>
<<if _nextCard != undefined>>
<<print _nextCard +", ">>
<</if>>
<</for>>
<</nobr>>
<</for>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Deal 1
<<return>>
@@
<<include "DoDeal1">>
@@.footer;
<<return>>
@@<<if !$lCut >> <<include "DoCut">> <</if>>
<<if $lDeal1>>
!! The Cards have already been dealt.
They can't be redealt unless you start over.
Is that what you want?
<<link "Yes" "6x7 Section 8">>
<<set $lShuffle = false>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</link>>
<<link "No" "6x7 Section 8">> <</link>>
<<else>>
<<set $lDeal1 = true>>
<<include "NowDoStep3">>
<</if>>----
!!! Step 3: Performing First Deal.
Cards before deal:
<<for _i=0; _i<4; _i++>>
<<nobr>>
<<set _jstart = _i*20>>
<<for _j=_jstart; _j<_jstart+20; _j++>>
<<set _nextCard = $cardN[_j]>>
<<if _nextCard != undefined>>
<<print _nextCard +", ">>
<</if>>
<</for>>
<</nobr>>
<</for>>
<<nobr>>
<<set $firstPacket1 = []>>
<<set $secondPacket1 = []>>
<<set $thirdPacket1 = []>>
<<set $fourthPacket1 = []>>
<<set $fifthPacket1 = []>>
<<set $sixthPacket1 = []>>
<<set $undealtPile = []>>
<<set _nCard = 0>>
/* want 1st card to go to bottom of 7-card packet */
<<for _k1=6; _k1>=0; _k1-->>
<<set $firstPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=6; _k1>=0; _k1-->>
<<set $secondPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=6; _k1>=0; _k1-->>
<<set $thirdPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=6; _k1>=0; _k1-->>
<<set $fourthPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=6; _k1>=0; _k1-->>
<<set $fifthPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=6; _k1>=0; _k1-->>
<<set $sixthPacket1[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<<for _k1=0; _k1<=35; _k1++>>
<<set $undealtPile[_k1] = $cardN[_nCard] >>
<<set _nCard++>>
<</for>>
<</nobr>>
Dealt Packets:
<<print $firstPacket1>>
<<print $secondPacket1>>
<<print $thirdPacket1>>
<<print $fourthPacket1>>
<<print $fifthPacket1>>
<<print $sixthPacket1>>
Undealt Pile:
<<print $undealtPile>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Deal 2
<<return>>
@@
<<include "DoDeal2">>
@@.footer;
<<return>>
@@<<if !$lDeal1 >> <<include "DoDeal1">> <</if>>
<<if $lDeal2>>
!! The Cards have already been dealt.
They can't be redealt unless you start over.
Is that what you want?
<<link "Yes" "6x7 Section 8">>
<<set $lShuffle = false>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</link>>
<<link "No" "6x7 Section 8">>
<</link>>
<<else>>
<<set $lDeal2 = true>>
<<include "NowDoStep4">>
<</if>>----
!!! Step 4: Perfoming Second Deal.
<<nobr>>
<<set $firstPacket2 = []>>
<<set $secondPacket2 = []>>
<<set $thirdPacket2 = []>>
<<set $fourthPacket2 = []>>
<<set $fifthPacket2 = []>>
<<set $sixthPacket2 = []>>
<<set $seventhPacket2 = []>>
<</nobr>>
Inital 6 Packets:
<<print $firstPacket1>>
<<print $secondPacket1>>
<<print $thirdPacket1>>
<<print $fourthPacket1>>
<<print $fifthPacket1>>
<<print $sixthPacket1>>
<<nobr>>
<<set _pkts = $firstPacket1.concat($secondPacket1, $thirdPacket1, $fourthPacket1, $fifthPacket1, $sixthPacket1) >>
/* try to follow instrunctions directly */
<<set _nInPkts = 0>>
<<for _k = 5; _k >=0; _k-->>
<<set $firstPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $secondPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $thirdPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $fourthPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $fifthPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $sixthPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<<set $seventhPacket2[_k] = _pkts[_nInPkts]>>
<<set _nInPkts++>>
<</for>>
<</nobr>>
Resulting 7 Packets:
<<print $firstPacket2>>
<<print $secondPacket2>>
<<print $thirdPacket2>>
<<print $fourthPacket2>>
<<print $fifthPacket2>>
<<print $sixthPacket2>>
<<print $seventhPacket2>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Layout 1
<<return>>
@@
<<include "DoLayout1">>
@@.footer;
<<return>>
@@<<if !$lDeal2 >> <<include "DoDeal2">> <</if>>
<<if $lLayout1>>
!! The Cards have already been layed out.
They can't be layed out again unless you start over.
Is that what you want?
<<link "Yes" "6x7 Section 8">>
<<set $lShuffle = false>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</link>>
<<link "No" "6x7 Section 8">>
<</link>>
<<else>>
<<set $lLayout1 = true>>
<<include "NowDoStep5">>
<</if>>----
!!! Step 5: Performing First Layout.
7 Packets:
<<print $firstPacket2>>
<<print $secondPacket2>>
<<print $thirdPacket2>>
<<print $fourthPacket2>>
<<print $fifthPacket2>>
<<print $sixthPacket2>>
<<print $seventhPacket2>>
<<nobr>>
<<set _layout = [
$seventhPacket2[0],
$sixthPacket2[0],
$fifthPacket2[0],
$fourthPacket2[0],
$thirdPacket2[0],
$secondPacket2[0],
$firstPacket2[0],
]>>
/* and remove those cards from the 7 packets */
<<set $firstPacket2.delete(_layout)>>
<<set $secondPacket2.delete(_layout)>>
<<set $thirdPacket2.delete(_layout)>>
<<set $fourthPacket2.delete(_layout)>>
<<set $fifthPacket2.delete(_layout)>>
<<set $sixthPacket2.delete(_layout)>>
<<set $seventhPacket2.delete(_layout)>>
<</nobr>>
First layout before shuffle:
<<print _layout>>
Shuffle...
<<set $Layout1 = _layout.shuffle()>> \
<<print $Layout1>>
Layout...
<<nobr>>First row:
<<set $Row1_6x7 = []>>
<<set _nRow = 0>>
<<for _i=6; _i>=0; _i-->>
$Layout1[_i],
<<set $Row1_6x7[_nRow] = $Layout1[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Layout 2
<<return>>
@@
<<include "DoLayout2">>
@@.footer;
<<return>>
@@<<if !$lLayout1 >> <<include "DoLayout1">> <</if>>
<<if $lLayout2>>
!! The Cards have already been layed out.
They can't be layed out again unless you start over.
Is that what you want?
<<link "Yes" "6x7 Section 8">>
<<set $lShuffle = false>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</link>>
<<link "No" "6x7 Section 8">>
<</link>>
<<else>>
<<set $lLayout2 = true>>
<<include "NowDoStep6">>
<</if>>----
!!! Step 6: Perfoming Second Layout.
7 Packets:
<<print $firstPacket2>>
<<print $secondPacket2>>
<<print $thirdPacket2>>
<<print $fourthPacket2>>
<<print $fifthPacket2>>
<<print $sixthPacket2>>
<<print $seventhPacket2>>
<<nobr>>
<<set _layout = [
$seventhPacket2[1],
$sixthPacket2[1],
$fifthPacket2[1],
$fourthPacket2[1],
$thirdPacket2[1],
$secondPacket2[1],
$firstPacket2[1],
$seventhPacket2[0],
$sixthPacket2[0],
$fifthPacket2[0],
$fourthPacket2[0],
$thirdPacket2[0],
$secondPacket2[0],
$firstPacket2[0]
]>>
/* and remove those cards from the 7 packets */
<<set $firstPacket2.delete(_layout)>>
<<set $secondPacket2.delete(_layout)>>
<<set $thirdPacket2.delete(_layout)>>
<<set $fourthPacket2.delete(_layout)>>
<<set $fifthPacket2.delete(_layout)>>
<<set $sixthPacket2.delete(_layout)>>
<<set $seventhPacket2.delete(_layout)>>
<</nobr>>
Second layout before shuffle:
<<print _layout>>
Shuffle...
<<set $Layout2 = _layout.shuffle()>> \
<<print $Layout2>>
Layout...
<<nobr>>Second row:
<<set $Row2_6x7 = []>>
<<set _nRow = 0>>
<<for _i=6; _i>=0; _i-->>
$Layout2[_i],
<<set $Row2_6x7[_nRow] = $Layout2[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>
<<nobr>>Third row:
<<set $Row3_6x7 = []>>
<<set _nRow = 0>>
<<for _i=13; _i>=7; _i-->>
$Layout2[_i],
<<set $Row3_6x7[_nRow] = $Layout2[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>
/*------------------------------------------------------*/@@.header;
!! 6x7 Layout 3
<<return>>
@@
<<include "DoLayout3">>
@@.footer;
<<return>>
@@<<if !$lLayout2 >> <<include "DoLayout2">> <</if>>
<<if $lLayout3>>
!! The Cards have already been layed out.
They can't be layed out again unless you start over.
Is that what you want?
<<link "Yes" "6x7 Section 8">>
<<set $lShuffle = false>>
<<set $lCut = false>>
<<set $lDeal1 = false>>
<<set $lDeal2 = false>>
<<set $lLayout1 = false>>
<<set $lLayout2 = false>>
<<set $lLayout3 = false>>
<<set $lSpread = false>>
<<set $l35Shuffle = false>>
<<set $l35Cut = false>>
<<set $l35Layout = false>>
<<set $l35Spread = false>>
<</link>>
<<link "No" "6x7 Section 8">>
<</link>>
<<else>>
<<set $lLayout3 = true>>
<<include "NowDoStep7">>
<</if>>----
!!! Step 7: Performing Third Layout.
7 Packets:
<<print $firstPacket2>>
<<print $secondPacket2>>
<<print $thirdPacket2>>
<<print $fourthPacket2>>
<<print $fifthPacket2>>
<<print $sixthPacket2>>
<<print $seventhPacket2>>
<<nobr>>
<<set _layout = [
$seventhPacket2[2],
$sixthPacket2[2],
$fifthPacket2[2],
$fourthPacket2[2],
$thirdPacket2[2],
$secondPacket2[2],
$firstPacket2[2],
$seventhPacket2[1],
$sixthPacket2[1],
$fifthPacket2[1],
$fourthPacket2[1],
$thirdPacket2[1],
$secondPacket2[1],
$firstPacket2[1],
$seventhPacket2[0],
$sixthPacket2[0],
$fifthPacket2[0],
$fourthPacket2[0],
$thirdPacket2[0],
$secondPacket2[0],
$firstPacket2[0],
]>>
/* and remove those cards from the 7 packets */
<<set $firstPacket2.delete(_layout)>>
<<set $secondPacket2.delete(_layout)>>
<<set $thirdPacket2.delete(_layout)>>
<<set $fourthPacket2.delete(_layout)>>
<<set $fifthPacket2.delete(_layout)>>
<<set $sixthPacket2.delete(_layout)>>
<<set $seventhPacket2.delete(_layout)>>
<</nobr>>
Third layout before shuffle:
<<print _layout>>
Shuffle...
<<set $Layout3 = _layout.shuffle()>> \
<<print $Layout3>>
Layout...
<<nobr>>Fourth row:
<<set $Row4_6x7 = []>>
<<set _nRow = 0>>
<<for _i=6; _i>=0; _i-->>
$Layout3[_i],
<<set $Row4_6x7[_nRow] = $Layout3[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>
<<nobr>>Fifth row:
<<set $Row5_6x7 = []>>
<<set _nRow = 0>>
<<for _i=13; _i>=7; _i-->>
$Layout3[_i],
<<set $Row5_6x7[_nRow] = $Layout3[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>
<<nobr>>Sixth row:
<<set $Row6_6x7 = []>>
<<set _nRow = 0>>
<<for _i=20; _i>=14; _i-->>
$Layout3[_i],
<<set $Row6_6x7[_nRow] = $Layout3[_i]>>
<<set _nRow++>>
<</for>>
<</nobr>>@@.header;
!! 6x7 Locate Representative
Back to description of [[Alternative Method|6x7 Section 8]],
Back to [[Spread|6x7 Spread]]
@@
<<include "FindRep">>
@@.footer;
Back to description of [[Alternative Method|6x7 Section 8]],
Back to [[Spread|6x7 Spread]]
@@<<if !$lLayout3 >> <<include "DoLayout3">> <</if>>
!!! Step 9: Choose the Querant's Representative
Please select the appropriate Card to represent the Querant.
You can click on a card to see more information about what it represents.
<table>
<tr>
<td>
[[Choose Magician|6x7 Choose Magician]]
</td>
<td>
[[Choose High Priestess|6x7 Choose High Priestess]]
</td>
</tr>
<tr>
<td>
<<linkCard 1 showCardInfo>>
</td>
<td>
<<linkCard 2 showCardInfo>>
</td>
</tr>
<tr>
<td>
[[Choose Magician|6x7 Choose Magician]]
</td>
<td>
[[Choose High Priestess|6x7 Choose High Priestess]]
</td>
</tr>
</table>@@.header;
You have chosen the Magician to represent the Querant.
Back to description of [[Alternative Method|6x7 Section 8]],
Back to [[Spread|6x7 Spread]]
@@
<<set $Rep6x7 = 1>>
<<linkCard $Rep6x7 showCardInfo>>
<<include "6x7 Search">>
@@.footer;
Back to description of [[Alternative Method|6x7 Section 8]],
Back to [[Spread|6x7 Spread]]
@@@@.header;
You have chosen the High Priestess to represent the Querant.
@@
<<set $Rep6x7 = 2>>
<<linkCard $Rep6x7 showCardInfo>>
<<include "6x7 Search">>
@@.footer;
Back to description of [[Alternative Method|6x7 Section 8]],
Back to [[Spread|6x7 Spread]]
@@
/*------------------------------------------------*//* search the spread, then the stack */
Searching...
<<set $Rep = "Nope">>
Row1...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row1_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row1_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row 1 Card " + $Li>> \
Found Representative Card in Row1: Card $Li
<<linkCard $Row1_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<<if $Rep eq "Nope">>
Row2...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row2_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row2_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row2 Card " + $Li>> \
Found Representative Card in Row2: Card $Li
<<linkCard $Row2_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<</if>>
<<if $Rep eq "Nope">>
Row3...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row3_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row3_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row3 Card " + $Li>> \
Found Representative Card in Row3: Card $Li
<<linkCard $Row3_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<</if>>
<<if $Rep eq "Nope">>
Row4...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row4_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row4_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row4 Card " + $Li>> \
Found Representative Card in Row4: Card $Li
<<linkCard $Row4_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<</if>>
<<if $Rep eq "Nope">>
Row5...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row5_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row5_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row5 Card " + $Li>> \
Found Representative Card in Row5: Card $Li
<<linkCard $Row5_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<</if>>
<<if $Rep eq "Nope">>
Row6...
<<for $Li=0; $Li<7; $Li++>> \
<<if $Row6_6x7[$Li] eq $Rep6x7>> \
<<set $RepL = $Row6_6x7>> \
<<set $RepC = $Li>> \
<<set $Rep = "Row6 Card " + $Li>> \
Found Representative Card in Row6: Card $Li
<<linkCard $Row6_6x7[$Li] showCardInfo>>
<<include "6x7 ReplaceFromPile">>
<</if>>
<</for>>
<</if>>
<<if $Rep eq "Nope">>
The Representative Card is not in the Spread, so search for it in the Pile.
<<include "delFromPile">>
<<else>>
The Representative Card was in the Spread and has been replaced from the Pile: $Rep is now $RepL[$RepC].
<</if>>Replacing the Representative Card at its place in the Spread by one from the Pile.
Inital Layouts:
Row 1: <<print $Row1_6x7>>
Row 2: <<print $Row2_6x7>>
Row 3: <<print $Row3_6x7>>
Row 4: <<print $Row4_6x7>>
Row 5: <<print $Row5_6x7>>
Row 6: <<print $Row6_6x7>>
Initial Pile:
<<print $undealtPile>>
<<set $RepL[$RepC] = $undealtPile.pluck()>>
Replaced by $RepL[$RepC]
<<linkCard $RepL[$RepC] showCardInfo>>
New Layouts:
Row 1: <<print $Row1_6x7>>
Row 2: <<print $Row2_6x7>>
Row 3: <<print $Row3_6x7>>
Row 4: <<print $Row4_6x7>>
Row 5: <<print $Row5_6x7>>
Row 6: <<print $Row6_6x7>>
/* Pile now contains only 35(?) cards */
New Pile:
<<print $undealtPile>>Initial Pile:
<<print $undealtPile>>
<<set _deleted = []>>
<<set _deleted = $undealtPile.delete($Rep6x7)>>
<<if _deleted.includes($Rep6x7)>>
The Representative Card <<print $Rep6x7>> was found in the Pile.
<<else>>
The Representative Card <<print $Rep6x7>> cannot be found. Oops. Software failure?
<</if>>
Subsequent Pile:
<<print $undealtPile>>@@.header;
!! 6x7 Spread
[[Translation|6x7 Translation]] --- Back to description of [[Alternative Method|6x7 Section 8]]
@@
<span id="top"></span> \
<<if !$lLayout3 >>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>, <<link "First Layout">><<ScrollTo "first">><</link>>, <<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<<include "DoLayout3">>
----
<</if>> \
Scroll to <<link "Top">><<ScrollTo "top">><</link>>, <<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
----
<span id="first"></span>
!!! Step 8: View the Spread
<<if ($Rep6x7 neq 1) and ($Rep6x7 neq 2) >>
Please choose a Card to represent the Querant: [[Choose Representative|6x7 Locate Representative]].
<<else>>
The Querant's representative Card is <<print $Rep6x7>>:
<<linkCard $Rep6x7 showCardInfo>>
<</if>>
!!! First Layout
First Stack: <<print $Layout1>>
Row 1 Layout: <<print $Row1_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row1_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<span id="secondLayout"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
!!!Second Layout
Second Stack: <<print $Layout2>>
Row 2 Layout: <<print $Row2_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row2_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<span id="secondLayoutRow2"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
!!! Second Layout, Second Row
Row 3 Layout: <<print $Row3_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row3_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<span id="thirdLayout"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
!!! Third Layout
Third Stack: <<print $Layout3>>
Row 4 Layout:<<print $Row4_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row4_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<span id="thirdLayoutRow2"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
!!! Third Layout, Second Row
Row 5 Layout: <<print $Row5_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row5_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<span id="thirdLayoutRow3"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
<</nobr>>
!!! Third Layout, Third Row
Row 6 Layout: <<print $Row6_6x7>>
<<nobr>>
<table>
<tr>
<<for _i=0; _i<7; _i++>>
<td>
<<set _myNcard = $Row6_6x7[_i]>>
/* <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* <<print _myAngle + ". ">> */
<<linkCard _myNcard showCard _myAngle >>
</td>
<</for>>
</tr>
</table>
<</nobr>>
<span id="bottom"></span>
Scroll to <<link "Top">><<ScrollTo "top">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "secondLayoutRow2">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>, <<link "Third layout, second row">><<ScrollTo "thirdLayoutRow2">><</link>>, <<link "Third layout, third row">><<ScrollTo "thirdLayoutRow3">><</link>>,
<<link "Bottom">><<ScrollTo "bottom">><</link>>.
@@.footer;
[[Translation|6x7 Translation]] --- Back to description of [[Alternative Method|6x7 Section 8]]
@@@@.header;
!! 6x7 Spread Translation
Back to [[6x7 Spread]], Back to description of [[Alternative Method|6x7 Section 8]]
@@
<span id="topOfTrans"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
<<silently>>
<<include "init ncards">>
<</silently>>
----
!!! First Layout
First Stack: <<print $Layout1>>
----
!!!! First Layout, First Row; Spread Row 1
Row 1 Layout: <<print $Row1_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->>
<<nobr>>
<<set _myNcard = $Row1_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="secondLayout"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
----
!!! Second Layout
Second Stack: <<print $Layout2>>
----
!!!! Second Layout, First Row; Spread Row 2
Row 2 Layout: <<print $Row2_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->>
<<nobr>>
<<set _myNcard = $Row2_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="row22"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
!!!! Second Layout, Second Row; Spread Row 3
Row 3 Layout: <<print $Row3_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->>
<<nobr>>
<<set _myNcard = $Row3_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="thirdLayout"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
----
!!! Third Layout
Third Stack: <<print $Layout3>>
----
!!!! Third Layout, First Row; Spread Row4
Row 4 Layout:<<print $Row4_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->> \
<<nobr>>
<<set _myNcard = $Row4_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="row32"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
!!!! Third Layout, Second Row; Spread Row 5
Row 5 Layout: <<print $Row5_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->> \
<<nobr>>
<<set _myNcard = $Row5_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="row33"></span>
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
!!!! Third Layout, Third Row; Spread Row 6
Row 6 Layout: <<print $Row6_6x7>>
Reading right to left.
----
<<for _i=6; _i>=0; _i-->>
<<nobr>>
<<set _myNcard = $Row6_6x7[_i]>>
/* myNcard <<print _myNcard + ", ">> */
<<set _myAngle = $angle[_myNcard] >>
/* myAngle <<print _myAngle + ". ">> */
<</nobr>>
<<nobr>>
<<if _myAngle < 170>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Upright">>
<<else>>
<<set _txt = $cardPsg[_myNcard] + "_Text_Reversed">>
<</if>>
<<include _txt >>
<</nobr>>
<</for>>
----
<span id="bottomOfTrans"></span>
<<include "Any Recurrences">>
----
Scroll to <<link "Top">><<ScrollTo "topOfTrans">><</link>>,
<<link "Second layout">><<ScrollTo "secondLayout">><</link>>, <<link "Second layout, second row">><<ScrollTo "row22">><</link>>,
<<link "Third layout">><<ScrollTo "thirdLayout">><</link>>,<<link "Third layout, second row">><<ScrollTo "row32">><</link>>, <<link "Third layout, third row">><<ScrollTo "row33">><</link>>,
<<link "Bottom">><<ScrollTo "bottomOfTrans">><</link>>.
@@.footer;
Back to [[6x7 Spread]], Back to description of [[Alternative Method|6x7 Section 8]]
@@!!! The Fool: Major Arcana Card 0
//The Fool, Mate, or Unwise Man.// Court de Gebelin places it at the head of the whole series as the zero or negative which is pre-supposed by numeration, and as this is a simpler so also it is a better arrangement. It has been abandoned because in later times the cards have been attributed to the letters of the Hebrew alphabet, and there has been apparently some difficulty about allocating the zero symbol satisfactorily in a sequence of letters all of which signify numbers. In the present reference of the card to the letter //Shin//, which corresponds to 200, the difficulty or the unreason remains. The truth is that the real arrangement of the cards has never transpired. The Fool carries a wallet; he is looking over his shoulder and does not know that he is on the brink of a precipice; but a dog or other animal---some call it a tiger---is attacking him from behind, and he is hurried to his destruction unawares. Etteilla has given a justifiable variation of this card---as generally understood---in the form of a court jester, with cap, bells and motley garb. The other descriptions say that the wallet contains the bearer's follies and vices, which seems bourgeois and arbitrary.
With light step, as if earth and its trammels had little power to restrain him, a young man in gorgeous vestments pauses at the brink of a precipice among the great heights of the world; he surveys the blue distance before him---its expanse of sky rather than the prospect below. His act of eager walking is still indicated, though he is stationary at the given moment; his dog is still bounding. The edge which opens on the depth has no terror; it is as if angels were waiting to uphold him, if it came about that he leaped from the height. His countenance is full of intelligence and expectant dream. He has a rose in one hand and in the other a costly wand, from which depends over his right shoulder a wallet curiously embroidered. He is a prince of the other world on his travels through this one---all amidst the morning glory, in the keen air. The sun, which shines behind him, knows whence he came, whither he is going, and how he will return by another path after many days. He is the spirit in search of experience. Many symbols of the Instituted Mysteries are summarized in this card, which reverses, under high warrants, all the confusions that have preceded it.
In his //Manual Of Cartomancy//, Grand Orient has a curious suggestion of the office of Mystic Fool, as a part of his process in higher divination; but it might call for more than ordinary gifts to put it into operation. We shall see how the card fares according to the common arts of fortune-telling, and it will be an example, to those who can discern, of the fact, otherwise so evident, that the Trumps Major had no place originally in the arts of psychic gambling, when cards are used as the counters and pretexts. Of the circumstances under which this art arose we know, however, very little. The conventional explanations say that the Fool signifies the flesh, the sensitive life, and by a peculiar satire its subsidiary name was at one time the alchemist, as depicting folly at the most insensate stage.</p>
-- L. W. de Laurence (1918)!!! The Magician: Major Arcana Card 1
//The Magus, Magician, or Juggler//, the caster of the dice and mountebank, in the world of vulgar trickery. This is the //colportage// interpretation, and it has the same correspondence with the real symbolical meaning that the use of the Tarot in fortune-telling has with its mystic construction according to the secret science of symbolism. I should add that many independent students of the subject, following their own lights, have produced individual sequences of meaning in respect of the Trumps Major, and their lights are sometimes suggestive, but they are not the true lights. For example, Eliphas Lévi says that the Magus signifies that unity which is the mother of numbers; others say that it is the Divine Unity; and one of the latest French commentators considers that in its general sense it is the will.
A youthful figure in the robe of a magician, having the countenance of divine Apollo, with smile of confidence and shining eyes. Above his head is the mysterious sign of the Holy Spirit, the sign of life, like an endless cord, forming the figure 8 in a horizontal position ∞. About his waist is a serpent-cincture, the serpent appearing to devour its own tail. This is familiar to most as a conventional symbol of eternity, but here it indicates more especially the eternity of attainment in the spirit. In the Magician's right hand is a wand raised towards heaven, while the left hand is pointing to the earth. This dual sign is known in very high grades of the Instituted Mysteries; it shows the descent of grace, virtue and light, drawn from things above and derived to things below. The suggestion throughout is therefore the possession and communication of the Powers and Gifts of the Spirit. On the table in front of the Magician are the symbols of the four Tarot suits, signifying the elements of natural life, which lie like counters before the adept, and he adapts them as he wills. Beneath are roses and lilies, the //flos campi// and //lilium convallium//, changed into garden flowers, to show the culture of aspiration. This card signifies the divine motive in man, reflecting God, the will in the liberation of its union with that which is above. It is also the unity of individual being on all planes, and in a very high sense it is thought, in the fixation thereof. With further reference to what I have called the sign of life and its connection with the number 8, it may be remembered that Christian Gnosticism speaks of rebirth in Christ as a change "unto the Ogdoad." The mystic number is termed Jerusalem above, the Land flowing with Milk and Honey, the Holy Spirit and the Land of the Lord. According to Martinism, 8 is the number of Christ.
-- L. W. de Laurence (1918)!!! The High Priestess: Major Arcana Card 2
//The High Priestess, the Pope Joan//, or Female Pontiff; early expositors have sought to term this card the Mother, or Pope's Wife, which is opposed to the symbolism. It is sometimes held to represent the Divine Law and the Gnosis, in which case the Priestess corresponds to the idea of the //Shekinah//. She is the Secret Tradition and the higher sense of the instituted Mysteries.
She has the lunar crescent at her feet, a horned diadem on her head, with a globe in the middle place, and a large solar cross on her breast. The scroll in her hands is inscribed with the word //Tora//, signifying the Greater Law, the Secret Law and the second sense of the Word. It is partly covered by her mantle, to show that some things are implied and some spoken. She is seated between the white and black pillars---J. and B.---of the mystic Temple and the veil of the Temple is behind her: it is embroidered with palms and pomegranates. The vestments are flowing and gauzy, and the mantle suggests light---a shimmering radiance. She has been called Occult Science on the threshhold of the Sanctuary of Isis, but she is really the Secret Church, the House which is of God (Nature) and man. She represents also the Second Marriage of the Prince who is no longer of this world; she is the spiritual Bride and Mother, the daughter of the stars and the Higher Garden of Eden. She is, in fine, the Queen of the borrowed light, but this is the light of all. She is the Moon nourished by the milk of the Supernal Mother.
In a manner, she is also the Supernal Mother herself---that is to say, she is the bright reflection. It is in this sense of reflection that her truest and highest name in bolism is //Shekinah//---the co-habiting glory. According to Kabalism, there is a //Shekinah// both above and below. In the superior world it is called //Binah//, the Supernal Understanding which reflects to the emanations that are beneath. In the lower world it is //Malkuth//---that world being, for this purpose, understood as a blessed Kingdom---that with which it is made blessed being the Indwelling Glory. Mystically speaking, the //Shekinah// is the Spiritual Bride of the just man, and when he reads the Law she gives the Divine meaning. There are some respects in which this card is the highest and holiest of the Greater Arcana.
-- L. W. de Laurence (1918)!!! The Empress: Major Arcana Card 3
//The Empress//, who is sometimes represented with full face, while her correspondence, the Emperor, is in profile. As there has been some tendency to ascribe a symbolical significance to this distinction, it seems desirable to say that it carries no inner meaning. The //Empress// has been connected with the ideas of universal fecundity and in a general sense with activity.
A stately figure, seated, having rich vestments and royal aspect, as of a daughter of heaven and earth. Her diadem is of twelve stars, gathered in a cluster. The symbol of Venus is on the shield which rests near her. A field of corn is ripening in front of her, and beyond there is a fall of water. The scepter which she bears is surmounted by the globe of this world. She is the inferior Garden of Eden, the Earthly Paradise, all that is symbolized by the visible house of man. She is not //Regina coeli//, but she is still //refugium peccatorum//, the fruitful mother of thousands. There are also certain aspects in which she has been correctly described as desire and the wings thereof, as the woman clothed with the sun, as //Gloria Mundi// and the veil of the //Sanctum Sanctorum//; but she is not, I may add, the soul that has attained wings, unless all the symbolism is counted up another and unusual way. She is above all things universal fecundity and the outer sense of the Word. This is obvious, because there is no direct message which has been given to man like that which is borne by woman; but she does not herself carry its interpretation.
In another order of ideas, the card of the Empress signifies the door or gate by which an entrance is obtained into this life, as into the Garden of Venus; and then the way which leads out therefrom, into that which is beyond, is the secret known to the High Priestess: it is communicated by her to the elect. Most old attributions of this card are completely wrong on the symbolism---as, for example, its identification with the Word, Divine Nature, the Triad, and so forth.
-- L. W. de Laurence (1918)!!! The Emperor: Major Arcana Card 4
//The Emperor//, by imputation the spouse of the Empress. He is occasionally represented as wearing, in addition to his personal insignia, the stars or ribbons of some order of chivalry. I mention this to show that the cards are a medley of old and new emblems. Those who insist upon the evidence of the one may deal, if they can, with the other. No effectual argument for the antiquity of a particular design can be drawn from the fact that it incorporates old material; but there is also none which can be based on sporadic novelties, the intervention of which may signify only the unintelligent hand of an editor or of a late draughtsman.
He has a form of the //Crux ansata// for his scepter and a globe in his left hand. He is crowned monarch---commanding, stately, seated on a throne, the arms of which are fronted by rams' heads. He is executive and realization, the power of this world, here clothed with the highest of its natural attributes. He is occasionally represented as seated on a cubic stone, which, however, confuses some of the issues. He is the virile power, to which the Empress responds, and in this sense is he who seeks to remove the Veil of Isis; yet she remains //virgo intacta//.
It should be understood that this card and that of the Empress do not precisely represent the condition of married life, though this state is implied. On the surface, as I have indicated, they stand for mundane royalty, uplifted on the seats of the mighty; but above this there is the suggestion of another presence. They signify, also---and the male figure especially---the higher kingship, occupying the intellectual throne. Hereof is the lordship of thought rather than of the animal world. Both personalities, after their own manner, are "full of strange experience," but theirs is not consciously the wisdom which draws from a higher world. The Emperor has been described as (//a//) will in its embodied form, but this is only one of its applications, and (//b//) as an expression of virtualities contained in the Absolute Being---but this is fantasy.
-- L. W. de Laurence (1918)!!! ThHierophant: Major Arcana Card 5
//The High Priest or Hierophant//, called also Spiritual Father, and more commonly and obviously the Pope. It seems even to have been named the Abbot, and then its correspondence, the High Priestess, was the Abbess or Mother of the Convent. Both are arbitrary names. The insignia of the figures are papal, and in such case the High Priestess is and can be only the Church, to whom Pope and priests are married by the spiritual rite of ordination. I think, however, that in its primitive form this card did not represent the Roman Pontiff.
He wears the triple crown and is seated between two pillars, but they are not those of the Temple which is guarded by the High Priestess. In his left hand he holds a scepter terminating in the triple cross, and with his right hand he gives the well-known ecclesiastical sign which is called that of esotericism, distinguishing between the manifest and concealed part of doctrine. It is noticeable in this connection that the High Priestess makes no sign. At his feet are the crossed keys, and two priestly ministers in albs kneel before him. He has been usually called the Pope, which is a particular application of the more general office that he symbolizes. He is the ruling power of external religion, as the High Priestess is the prevailing genius of the esoteric, withdrawn power. The proper meanings of this card have suffered woeful admixture from nearly all hands. //Grand Orient// says truly that the Hierophant is the power of the keys, exoteric orthodox doctrine, and the outer side of the life which leads to the doctrine; but he is certainly not the prince of occult doctrine, as another commentator has suggested.
He is rather the //summa totius theologiæ//, when it has passed into the utmost rigidity of expression; but he symbolizes also all things that are righteous and sacred on the manifest side. As such, he is the channel of grace belonging to the world of institution as distinct from that of Nature, and he is the leader of salvation for the human race at large. He is the order and the head of the recognized hierarchy, which is the reflection of another and greater hierarchic order; but it may so happen that the pontiff forgets the significance of this his symbolic state and acts as if he contained within his proper measures all that his sign signifies or his symbol seeks to show forth. He is not, as it has been thought, philosophy---except on the theological side; he is not inspiration; and he is not religion, although he is a mode of its expression.
-- L. W. de Laurence (1918)!!! The Lovers: Major Arcana Card 6
//The Lovers or Marriage.// This symbol has undergone many variations, as might be expected from its subject. In the eighteenth century form, by which it first became known to the world of archæological research, it is really a card of married life, showing father and mother, with their child placed between them; and the pagan Cupid above, in the act of flying his shaft, is, of course, a misapplied emblem. The Cupid is of love beginning rather than of love in its fulness, guarding the fruit thereof. The card is said to have been entitled //Simulacrum fidei//, the symbol of conjugal faith, for which the rainbow as a sign of the covenant would have been a more appropriate concomitant. The figures are also held to have signified Truth, Honor and Love, but I suspect that this was, so to speak, the gloss of a commentator moralizing. It has these, but it has other and higher aspects.
The sun shines in the zenith, and beneath is a great winged figure with arms extended, pouring down influences. In the foreground are two human figures, male and female, unveiled before each other, as if Adam and Eve when they first occupied the paradise of the earthly body. Behind the man is the Tree of Life, bearing twelve fruits, and the Tree of the Knowledge of Good and Evil is behind the woman; the serpent is twining round it. The figures suggest youth, virginity, innocence and love before it is contaminated by gross material desire. This is in all simplicity the card of human love, here exhibited as part of the way, the truth and the life. It replaces, by recourse to first principles, the old card of marriage, which I have described previously, and the later follies which depicted man between vice and virtue. In a very high sense, the card is a mystery of the Covenant and Sabbath.
The suggestion in respect of the woman is that she signifies that attraction towards the sensitive life which carries within it the idea of the Fall of Man, but she is rather the working of a Secret Law of Providence than a willing and conscious temptress. It is through her imputed lapse that man shall arise ultimately, and only by her can he complete himself. The card is therefore in its way another intimation concerning the great mystery of womanhood. The old meanings fall to pieces of necessity with the old pictures, but even as interpretations of the latter, some of them were of the order of commonplace and others were false in symbolism.
-- L. W. de Laurence (1918)!!! The Chariot: Major Arcana Card 7
//The Chariot.// This is represented in some extant codices as being drawn by two sphinxes, and the device is in consonance with the symbolism, but it must not be supposed that such was its original form; the variation was invented to support a particular historical hypothesis. In the eighteenth century white horses were yoked to the car. As regards its usual name, the lesser stands for the greater; it is really the King in his triumph, typifying, however, the victory which creates kingship as its natural consequence and not the vested royalty of the fourth card. M. Court de Gebelin said that it was Osiris Triumphing, the conquering sun in spring-time having vanquished the obstacles of winter. We know now that Osiris rising from the dead is not represented by such obvious symbolism. Other animals than horses have also been used to draw the //currus triumphalis//, as, for example, a lion and a leopard.
An erect and princely figure carrying a drawn sword and corresponding, broadly speaking, to the traditional description which I have given in the first part. On the shoulders of the victorious hero are supposed to be the //Urim// and //Thummim//. He has led captivity captive; he is conquest on all planes---in the mind, in science, in progress, in certain trials of initiation. He has thus replied to the //Sphinx//, and it is on this account that I have accepted the variation of Eliphas Lévi; two sphinxes thus draw his chariot. He is above all things triumph in the mind.
It is to be understood for this reason (//a//) that the question of the sphinx is concerned with a Mystery of Nature and not of the world of Grace, to which the charioteer could offer no answer; (//b//) that the planes of his conquest are manifest or external and not within himself; (//c//) that the liberation which he effects may leave himself in the bondage of the logical understanding; (//d//) that the tests of initiation through which he has passed in triumph are to be understood physically or rationally and (//e//) that if he came to the pillars of that Temple between which the High Priestess is seated, he could not open the scroll called //Tora//, nor if she questioned him could he answer. He is not hereditary royalty and he is not priesthood.
-- L. W. de Laurence (1918)!!! Strength: Major Arcana Card 8
//Fortitude.// This is one of the cardinal virtues, of which I shall speak later. The female figure is usually represented as closing the mouth of a lion. In the earlier form which is printed by Court de Gebelin, she is obviously opening it. The first alternative is better symbolically, but either is an instance of strength in its conventional understanding, and conveys the idea of mastery. It has been said that the figure represents organic force, moral force and the principle of all force.
A woman, over whose head there broods the same symbol of life which we have seen in the card of the Hierophant, is closing the jaws of a lion. The only point in which this design differs from the conventional presentations is that her beneficent fortitude has already subdued the lion, which is being led by a chain of flowers. For reasons which satisfy myself, this card has been interchanged with that of Justice, which is usually numbered eight. As the variation carries nothing with it which will signify to the reader, there is no cause for explanation. Fortitude, in one of its most exalted aspects, is connected with the Divine Mystery of Union; the virtue, of course, operates in all planes, and hence draws on all in its symbolism. It connects also with //innocentia inviolata//, and with the strength which resides in contemplation.
These higher meanings are, however, matters of inference, and I do not suggest that they are transparent on the surface of the card. They are intimated in a concealed manner by the chain of flowers, which signifies, among many other things, the sweet yoke and the light burden of Divine Law, when it has been taken into the heart of hearts. The card has nothing to do with self-confidence in the ordinary sense, though this has been suggested---but it concerns the confidence of those whose strength is God (Nature), who have found their refuge in Him. There is one aspect in which the lion signifies the passions, and she who is called Strength is the higher nature in its liberation. It has walked upon the asp and the basilisk and has trodden down the lion and the dragon.
-- L. W. de Laurence (1918)!!! The Hermit: Major Arcana Card 9
//The Hermit//, as he is termed in common parlance, stands next on the list; he is also the Capuchin, and in more philosophical language the Sage. He is said to be in search of that Truth which is located far off in the sequence, and of Justice which has preceded him on the way. But this is a card of attainment, as we shall see later, rather than a card of quest. It is said also that his lantern contains the Light of Occult Science and that his staff is a Magic Wand. These interpretations are comparable in every respect to the divinatory and fortune-telling meanings with which I shall have to deal in their turn. The diabolism of both is that they are true after their own manner, but that they miss all the high things to which the Greater Arcana should be allocated. It is as if a man who knows in his heart that all roads lead to the heights, and that God (Nature) is at the great height of all, should choose the way of perdition or the way of folly as the path of his own attainment. Eliphas Lévi has allocated this card to Prudence, but in so doing he has been actuated by the wish to fill a gap which would otherwise occur in the symbolism. The four cardinal virtues are necessary to an idealogical sequence like the Trumps Major, but they must not be taken only in that first sense which exists for the use and consolation of him who in these days of halfpenny journalism is called the man in the street. In their proper understanding they are the correlatives of the counsels of perfection when these have been similarly re-expressed, and they read as follows: (//a//) Transcendental Justice, the counter-equilibrium of the scales, when they have been over-weighted so that they dip heavily on the side of God (Nature). The corresponding counsel is to use loaded dice when you play for high stakes with //Diabolus//. The axiom is //Aut Deus, aut nihil//. (//b//) Divine Ecstasy, as a counterpoise to something called Temperance, the sign of which is, I believe, the extinction of lights in the tavern. The corresponding counsel is to drink only of new wine in the Kingdom of the Father, because God (Nature) is all in all. The axiom is that man being a reasonable being must get intoxicated with God (Nature); the imputed case in point is Spinoza. (//c//) The state of Royal Fortitude, which is the state of a Tower of Ivory and a House of Gold, but it is God (Nature) and not the man who has become //Turris fortitudinis a facie inimici//, and out of that House the enemy has been cast. The corresponding counsel is that a man must not spare himself even in the presence of death, but he must be certain that his sacrifice shall be---of any open course---the best that will ensure his end. The axiom is that the strength which is raised to such a degree that a man dares lose himself shall show him how Nature (God) is found, and as to such refuge---dare therefore and learn. (//d//) Prudence is the economy which follows the line of least resistance, that the soul may get back whence it came. It is a doctrine of divine parsimony and conservation of energy because of the stress, the terror and the manifest impertinences of this life. The corresponding counsel is that true prudence is concerned with the one thing needful, and the axiom is: Waste not, want not. The conclusion of the whole matter is a business proposition founded on the law of exchange: You cannot help getting what you seek in respect of the things that are Divine: it is the law of supply and demand. I have mentioned these few matters at this point for two simple reasons: (//a//) because in proportion to the impartiality of the mind it seems sometimes more difficult to determine whether it is vice or vulgarity which lays waste the present world more piteously; (//b//) because in order to remedy the imperfections of the old notions it is highly needful, on occasion, to empty terms and phrases of their accepted significance, that they may receive a new and more adequate meaning.
The variation from the conventional models in this card is only that the lamp is not enveloped partially in the mantle of its bearer, who blends the idea of the Ancient of Days with the Light of the World. It is a star which shines in the lantern. I have said that this is a card of attainment, and to extend this conception the figure is seen holding up his beacon on an eminence. Therefore the Hermit is not, as Court de Gebelin explained, a wise man in search of truth and justice; nor is he, as a later explanation proposes, an especial example of experience. His beacon intimates that "where I am, you also may be."
It is further a card which is understood quite incorrectly when it is connected with the idea of occult isolation, as the protection of personal magnetism against admixture. This is one of the frivolous renderings which we owe to Eliphas Lévi. It has been adopted by the French Order of Martinism and some of us have heard a great deal of the Silent and Unknown Philosophy enveloped by his mantle from the knowledge of the profane. In true Martinism, the significance of the term //Philosophe inconnu// was of another order. It did not refer to the intended concealment of the Instituted Mysteries, much less of their substitutes, but---like the card itself---to the truth that the Divine Mysteries secure their own protection from those who are unprepared.
-- L. W. de Laurence (1918)!!! The Wheel of Fortune: Major Arcana Card 10
//The Wheel of Fortune.// There is a current //Manual of Cartomancy// which has obtained a considerable vogue in England, and amidst a great scattermeal of curious things to no purpose has intersected a few serious subjects. In its last and largest edition it treats in one section of the Tarot; which---if I interpret the author rightly---it regards from beginning to end as the Wheel of Fortune, this expression being understood in my own sense. I have no objection to such an inclusive though conventional description; it obtains in all the worlds, and I wonder that it has not been adopted previously as the most appropriate name on the side of common fortune-telling. It is also the title of one of the Trumps Major---that indeed of our concern at the moment, as my sub-title shows. Of recent years this has suffered many fantastic presentations and one hypothetical reconstruction which is suggestive in its symbolism. The wheel has seven radii; in the eighteenth century the ascending and descending animals were really of nondescript character, one of them having a human head. At the summit was another monster with the body of an indeterminate beast, wings on shoulders and a crown on head. It carried two wands in its claws. These are replaced in the reconstruction by a Hermanubis rising with the wheel, a //Sphinx// couchant at the summit and a Typhon on the descending side. Here is another instance of an invention in support of a hypothesis; but if the latter be set aside the grouping is symbolically correct and can pass as such.
In this symbol I have again followed the reconstruction of Eliphas Lévi, who has furnished several variants. It is legitimate---as I have intimated---to use Egyptian symbolism when this serves our purpose, provided that no theory of origin is implied therein. I have, however, presented Typhon in his serpent form. The symbolism is, of course, not exclusively Egyptian, as the four Living Creatures of Ezekiel occupy the angles of the card, and the wheel itself follows other indications of Lévi in respect of Ezekiel's vision, as illustrative of the particular Tarot Key. With the French occultist, and in the design itself, the symbolic picture stands for the perpetual motion of a fluidic universe and for the flux of human life. The Sphinx is the equilibrium therein. The transliteration of //Taro// as //Rota// is inscribed on the wheel, counterchanged with the letters of the Divine Name---to show that Providence is implied through all. But this is the Divine intention within, and the similar intention without is exemplified by the four Living Creatures. Sometimes the sphinx is represented couchant on a pedestal above, which defrauds the symbolism by stultifying the essential idea of stability amidst movement.
Behind the general notion expressed in the symbol there lies the denial of chance and the fatality which is implied therein. It may be added that, from the days of Lévi onward, the occult explanations of this card are---even for occultism itself---of a singularly fatuous kind. It has been said to mean principle, fecundity, virile honor, ruling authority, etc. The findings of common fortune-telling are better than this on their own plane.
-- L. W. de Laurence (1918)!!! Justice: Major Arcana Card 11
//Justice.// That the //Tarot//, though it is of all reasonable antiquity, is not of time immemorial, is shown by this card, which could have been presented in a much more archaic manner. Those, however, who have gifts of discernment in matters of this kind will not need to be told that age is in no sense of the essence of the consideration; the Rite of Closing the Lodge in the Third Craft Grade of Masonry may belong to the late eighteenth century, but the fact signifies nothing; it is still the summary of all the instituted and official Mysteries. The female figure of the eleventh card is said to be Astræa, who personified the same virtue and is represented by the same symbols. This goddess notwithstanding, and notwithstanding the vulgarian Cupid, the Tarot is not of Roman mythology, or of Greek either. Its presentation of Justice is supposed to be one of the four cardinal virtues included in the sequence of Greater Arcana; but, as it so happens, fourth emblem is wanting, and it became necessary for the commentators to discover it at all costs. They did what it was possible to do, and yet the laws of research have never succeeded in extricating the missing Persephone under the form of Prudence. Court de Gebelin attempted to solve the difficulty by a //tour de force//, and believed that he had extracted what he wanted from the symbol of the Hanged Man---wherein he deceived himself. The Tarot has, therefore, its Justice, its Temperance also and its Fortitude, but---owing to a curious omission---it does not offer us any type of Prudence, though it may be admitted that, in some respects, the isolation of the Hermit, pursuing a solitary path by the light of his own lamp, gives, to those who can receive it, a certain high counsel in respect of the //via prudentiæ//.
As this card follows the traditional symbolism and carries above all its obvious meanings, there is little to say regarding it outside the few considerations collected in the first part, to which the reader is referred.
It will be seen, however, that the figure is seated between pillars, like the High Priestess, and on this account it seems desirable to indicate that the moral principle which deals unto every man according to his works---while, of course, it is in strict analogy with higher things---differs in its essence from the spiritual justice which is involved in the idea of election. The latter belongs to a mysterious order of Providence, in virtue of which it is possible for certain men to conceive the idea of dedication to the highest things. The operation of this is like the breathing of the Spirit where it wills, and we have no canon of criticism or ground of explanation concerning it. It is analogous to the possession of the fairy gifts and the high gifts and the gracious gifts of the poet: we have them or have not, and their presence is as much a mystery as their absence. The law of Justice is not, however, involved by either alternative. In conclusion, the pillars of Justice open into one world and the pillars of the High Priestess into another.
-- L. W. de Laurence (1918)!!! The Hanged Man: Major Arcana Card 12
//The Hanged Man.// This is the symbol which is supposed to represent Prudence, and Eliphas Lévi says, in his most shallow and plausible manner, that it is the adept bound by his engagements. The figure of a man is suspended head-downwards from a gibbet, to which he is attached by a rope about one of his ankles. The arms are bound behind him and one leg is crossed over the other. According to another, and indeed the prevailing interpretation, he signifies sacrifice, but all current meanings attributed to this card are cartomancists' intuitions, apart from any real value, on the symbolical side. The fortune-tellers of the eighteenth century who circulated Tarots, depict a semi-feminine youth in jerkin, poised erect on one foot and loosely attached to a short stake driven into the ground.
The gallows from which he is suspended forms a //Tau// cross, while the figure---from the position of the legs---forms a fylfot cross. There is a nimbus about the head of the seeming martyr. It should be noted (1) that the tree of sacrifice is living wood, with leaves thereon; (2) that the face expresses deep entrancement, not suffering; (3) that the figure, as a whole, suggests life in suspension, but life and not death. It is a card of profound significance, but all the significance is veiled. One of his editors suggests that Eliphas Lévi did not know the meaning, which is unquestionable---nor did the editor himself. It has been called falsely a card of martyrdom, a card of prudence, a card of the Great Work, a card of duty; but we may exhaust all published interpretations and find only vanity. I will say very simply on my own part that it expresses the relation, in one of its aspects, between the Divine and the Universe.
He who can understand that the story of his higher nature is imbedded in this symbolism will receive intimations concerning a great awakening that is possible, and will know that after the sacred //Mystery Of Death// there is a glorious //Mystery Of Resurrection//.
-- L. W. de Laurence (1918)!!! Death: Major Arcana Card 13
//Death.// The method of presentation is almost invariable, and embodies a bourgeois form of symbolism. The scene is the field of life, and amidst ordinary rank vegetation there are living arms and heads protruding from the ground. One of the heads is crowned, and a skeleton with a great scythe is in the act of mowing it. The transparent and unescapable meaning is death, but the alternatives allocated to the symbol are change and transformation. Other heads have been swept from their place previously, but it is, in its current and patent meaning, more especially a card of the death of Kings. In the exotic sense it has been said to signify the ascent of the spirit in the divine spheres, creation and destruction, perpetual movement, and so forth.
The veil or mask of life is perpetuated in change, transformation and passage from lower to higher, and this is more fitly represented in the rectified Tarot by one of the apocalyptic visions than by the crude notion of the reaping skeleton. Behind it lies the whole world of ascent in the spirit. The mysterious horseman moves slowly, bearing a black banner emblazoned with the Mystic Rose, which signifies life. Between two pillars on the verge of the horizon there shines the sun of immortality. The horseman carries no visible weapon, but king and child and maiden fall before him, while a prelate with clasped hands awaits his end.
There should be no need to point out that the suggestion of death which I have made in connection with the previous card [XII: The Hanged Man] is, of course, to be understood mystically, but this is not the case in the present instance. The natural transit of man to the next stage of his being either is or may be one form of his progress, but the exotic and almost unknown entrance, while still in this life, into the state of mystical death is a change in the form of consciousness and the passage into a state to which ordinary death is neither the path nor gate. The existing occult explanations of the 13th card are, on the whole, better than usual, rebirth, creation, destination, renewal, and the rest.
-- L. W. de Laurence (1918)!!! Temperance: Major Arcana Card 14
//Temperance.// The winged figure of a female---who, in opposition to all doctrine concerning the hierarchy of angels, is usually allocated to this order of ministering spirits---is pouring liquid from one pitcher to another. In his last work on the Tarot, Dr. Papus abandons the traditional form and depicts a woman wearing an //Egyptian// head-dress. The first thing which seems clear on the surface is that the entire symbol has no especial connection with Temperance, and the fact that this designation has always obtained for the card offers a very obvious instance of a meaning behind meaning, which is the title in chief to consideration in respect of the Tarot as a whole.
A winged angel, with the sign of the sun upon his forehead and on his breast the square and triangle of the septenary. I speak of him in the masculine sense, but the figure is neither male nor female. It is held to be pouring the essences of life from chalice to chalice. It has one foot upon the earth and one upon waters, thus illustrating the nature of the essences. A direct path goes up to certain heights on the verge of the horizon, and above there is a great light, through which a crown is seen vaguely. Hereof is some part of the Secret of Eternal Life, as it is possible to man in his incarnation. All the conventional emblems are renounced herein.
So also are the conventional meanings, which refer to changes in the seasons, perpetual movement of life, and even the combination of ideas. It is, moreover, untrue to say that the figure symbolizes the genius of the sun, though it is the analogy of solar light, realized in the third part of our human triplicity. It is called Temperance, fantastically, because, when the rule of it obtains in our consciousness, it tempers, combines and harmonizes the psychic and material natures. Under that rule we know in our rational part something of whence we came and whither we are going.
-- L. W. de Laurence (1918)!!! The Devil: Major Arcana Card 15
//The Devil.// In the eighteenth century this card seems to have been rather a symbol of merely animal impudicity. Except for a fantastic head-dress, the chief figure is entirely naked; it has bat-like wings, and the hands and feet are represented by the claws of a bird. In the right hand there is a scepter terminating in a sign which has been thought to represent fire. The figure as a whole is not particularly evil; it has no tail, and the commentators who have said that the claws are those of a harpy have spoken at random. There is no better ground for the alternative suggestion that they are eagle's claws. Attached, by a cord depending from their collars, to the pedestal on which the figure is mounted, are two small demons, presumably male and female. These are tailed but not winged. Since 1856 the influence of Eliphas Lévi and his doctrine of occultism has changed the face of this card, and it now appears as a pseudo-Baphometic figure with the head of a goat and a great torch between the horns; it is seated instead of erect, and in place of the generative organs there is the Hermetic caduceus. In //Le Tarot Divinatoire// of Papus the small demons are replaced by naked human beings, male and female, who are yoked only to each other. The author may be felicitated on this improved symbolism.
The design is an accommodation, mean or harmony, between several motives mentioned in the first part. The Horned Goat of Mendes, with wings like those of a bat, is standing on an altar. At the pit of the stomach there is the sign of Mercury. The right hand is upraised and extended, being the reverse of that benediction which is given by the Hierophant in the fifth card. In the left hand there is a great flaming torch, inverted towards the earth. A reversed pentagram is on the forehead. There is a ring in front of the altar, from which two chains are carried to the necks of two figures, male and female. These are analogous with those of the fifth card, as if Adam and Eve after the Fall. Hereof is the chain and fatality of the material life.
The figures are tailed, to signify the animal nature, but there is human intelligence in the faces, and he who is exalted above them is not to be their master for ever. Even now, he is also a bondsman, sustained by the evil that is in him and blind to the liberty of service. With more than his usual derision for the arts which he pretended to respect and interpret as a master therein, Eliphas Lévi affirms that the Baphometic figure is occult science and magic. Another commentator says that in the Divine world it signifies predestination, but there is no correspondence in that world with the things which below are of the brute. What it does signify is the Dweller on the Threshold without the Mystical Garden when those are driven forth therefrom who have eaten the forbidden fruit.
-- L. W. de Laurence (1918)!!! The Tower: Major Arcana Card 16
//The Tower struck by Lightning.// Its alternative titles are: Castle of Plutus, God's (Nature's) House and the Tower of Babel. In the last case, the figures falling therefrom are held to be Nimrod and his minister. It is assuredly a card of confusion, and the design corresponds, broadly speaking, to any of the designations except //Maison Dieu//, unless we are to understand that the House of God (Nature) has been abandoned and the veil of the temple rent. It is a little surprising that the device has not so far been allocated to the destruction of Solomon's Temple, when the lightning would symbolize the fire and sword with which that edifice was visited by the King of the Chaldees.
Occult explanations attached to this card are meager and mostly disconcerting. It is idle to indicate that it depicts ruin in all its aspects, because it bears this evidence on the surface. It is said further that it contains the first allusion to a material building, but I do not conceive that the Tower is more or less material than the pillars which we have met with in three previous cases. I see nothing to warrant Papus in supposing that it is literally the fall of Adam, but there is more in favor of his alternative---that it signifies the materialization of the spiritual word. The bibliographer Christian imagines that it is the downfall of the mind, seeking to penetrate the mystery of God (Nature). I agree rather with Grand Orient that it is the ruin of the House of Life, when evil has prevailed therein, and above all that it is the rending of a House of Doctrine. I understand that the reference is, however, to a House of Falsehood. It illustrates also in the most comprehensive way the old truth that "except the Lord build the house, they labor in vain that build it."
There is a sense in which the catastrophe is a reflection from the previous card, but not on the side of the symbolism which I have tried to indicate therein. It is more correctly a question of analogy; one is concerned with the fall into the material and animal state, while the other signifies destruction on the intellectual side. The Tower has been spoken of as the chastisement of pride and the intellect overwhelmed in the attempt to penetrate the Mystery of God (Nature); but in neither case do these explanations account for the two persons who are the living sufferers. The one is the literal word made void and the other its false interpretation. In yet a deeper sense, it may signify also the end of a dispensation, but there is no possibility here for the consideration of this involved question.
-- L. W. de Laurence (1918)!!! The Star: Major Arcana Card 17
//The Star//, Dog-Star, or Sirius, also called fantastically the Star of the Magi. Grouped about it are seven minor luminaries, and beneath it is a naked female figure, with her left knee upon the earth and her right foot upon the water. She is in the act of pouring fluids from two vessels. A bird is perched on a tree near her; for this a butterfly on a rose has been substituted in some later cards. So also the Star has been called that of Hope. This is one of the cards which Court de Gebelin describes as wholly Egyptian---that is to say, in his own reverie.
A great, radiant star of eight rays, surrounded by seven lesser stars---also of eight rays. The female figure in the foreground is entirely naked. Her left knee is on the land and her right foot upon the water. She pours Water of Life from two great ewers, irrigating sea and land. Behind her is rising ground and on the right a shrub or tree, whereon a bird alights. The figure expresses eternal youth and beauty. The star is //l'étoile flamboyante//, which appears in Masonic symbolism, but has been confused therein. That which the figure communicates to the living scene is the substance of the heavens and the elements. It has been said truly that the mottoes of this card are "Waters of Life freely" and "Gifts of the Spirit."
The summary of several tawdry explanations says that it is a card of hope. On other planes it has been certified as immortality and interior light. For the majority of prepared minds, the figure will appear as the type of Truth unveiled, glorious in undying beauty, pouring on the waters of the soul some part and measure of her priceless possession. But she is in reality the //Great Mother// in the //Kabalistic Sephira Binah//, which is supernal Understanding, who communicates to the //Sephiroth// that are below in the measure that they can receive her influx.
-- L. W. de Laurence (1918)!!! The Moon: Major Arcana Card 18
//The Moon.// Some eighteenth-century cards show the luminary on its waning side; in the debased edition of Etteilla, it is the moon at night in her plenitude, set in a heaven of stars; of recent years the moon is shown on the side of her increase. In nearly all presentations she is shining brightly and shedding the moisture of fertilizing dew in great drops. Beneath there are two towers, between which a path winds to the verge of the horizon. Two dogs, or alternatively a wolf and dog, are baying at the moon, and in the foreground there is water, through which a crayfish moves towards the land.
The distinction between this card and some of the conventional types is that the moon is increasing on what is called the side of mercy, to the right of the observer. It has sixteen chief and sixteen secondary rays. The card represents life of the imagination apart from life of the spirit. The path between the towers is the issue into the unknown. The dog and the wolf are the fears of the natural mind in the presence of that place of exit, when there is only reflected light to guide it.
The last reference is a key to another form of symbolism. The intellectual light is a reflection and beyond it is the unknown mystery which it cannot show forth. It illuminates our animal nature, types of which are represented below---the dog, the wolf and that which comes up out of the deeps, the nameless and hideous tendency which is lower than the savage beast. It strives to attain manifestation, symbolized by crawling from the abyss of water to the land, but as a rule it sinks back whence it came. The face of the mind directs a calm gaze upon the unrest below; the dew of thought falls; the message is: Peace, be still; and it may be that there shall come a calm upon the animal nature, while the abyss beneath shall cease from giving up a form.
-- L. W. de Laurence (1918)!!! The Sun: Major Arcana Card 19
//The Sun.// The luminary is distinguished in older cards by chief rays that are waved and salient alternately and by secondary salient rays. It appears to shed its influence on earth not only by light and heat, but---like the moon---by drops of dew. Court de Gebelin termed these tears of gold and of pearl just as he identified the lunar dew with the tears of //Isis//. Beneath the dog-star there is a wall suggesting an enclosure---as it might be, a walled garden---wherein are two children, either naked or lightly clothed, facing a water, and gambolling, or running hand in hand. Eliphas Lévi says that these are sometimes replaced by a spinner unwinding destinies, and otherwise by a much better symbol---a naked child mounted on a white horse and displaying a scarlet standard.
The naked child mounted on a white horse and displaying a red standard has been mentioned already as the better symbolism connected with this card. It is the destiny of the Supernatural East and the great and holy light which goes before the endless procession of humanity, coming out from the walled garden of the sensitive life and passing on the journey home. The card signifies, therefore, the transit from the manifest light of this world, represented by the glorious sun of earth, to the light of the world to come, which goes before aspiration and is typified by the heart of a child.
But the last allusion is again the key to a different form or aspect of the symbolism. The sun is that of consciousness in the spirit---the direct as the antithesis of the reflected light. The characteristic type of humanity has become a little child therein---a child in the sense of simplicity and innocence in the sense of wisdom. In that simplicity, he bears the seal of Nature and of Art; in that innocence, he signifies the restored world. When the self-knowing spirit has dawned in the consciousness above the natural mind, that mind in its renewal leads forth the animal nature in a state of perfect conformity.
-- L. W. de Laurence (1918)!!! Judgement: Major Arcana Card 20
//The Last Judgment.// I have spoken of this symbol already, the form of which is essentially invariable, even in the Etteilla set. An angel sounds his trumpet //per sepulchra regionum//, and the dead arise. It matters little that Etteilla omits the angel, or that Dr. Papus substitutes a ridiculous figure, which is, however, in consonance with the general motive of that Tarot set which accompanies his latest work. Before rejecting the transparent interpretation of the symbolism which is conveyed by the name of the card and by the picture which it presents to the eye, we should feel very sure of our ground. On the surface, at least, it is and can be only the resurrection of that triad---father, mother, child---whom we have met with already in the eighth card. M. Bourgeat hazards the suggestion that esoterically it is the symbol of evolution---of which it carries none of the signs. Others say that it signifies renewal, which is obvious enough; that it is the triad of human life; that it is the "generative force of the earth ... and eternal life." Court de Gebelin makes himself impossible as usual, and points out that if the grave-stones were removed it could be accepted as a symbol of creation.
This symbol is essentially invariable in all Tarot sets, or at least the variations do not alter its character. The great angel is here encompassed by clouds, but he blows his bannered trumpet, and the cross as usual is displayed on the banner. The dead are rising from their tombs---a woman on the right, a man on the left hand, and between them their child, whose back is turned. But in this card there are more than three who are restored, and it has been thought worth while to make this variation as illustrating the insufficiency of current explanations. It should be noted that all the figures are as one in the wonder, adoration and ecstasy expressed by their attitudes. It is the card which registers the accomplishment of the great work of transformation in answer to the summons of the Supernal---which summons is heard and answered from within.
Herein is the intimation of a significance which cannot well be carried further in the present place. What is that within us which does sound a trumpet and all that is lower in our nature rises in response---almost in a moment, almost in the twinkling of an eye? Let the card continue to depict, for those who can see no further, the Last Judgment and the resurrection in the natural body; but let those who have inward eyes look and discover therewith. They will understand that it has been called truly in the past a card of eternal life, and for this reason it may be compared with that which passes under the name of Temperance.
-- L. W. de Laurence (1918)!!!The World: Major Arcana Card 21
//The World, the Universe, or Time.// The four living creatures of the Apocalypse and Ezekiel's vision, attributed to the evangelists in Christian symbolism, are grouped about an elliptic garland, as if it were a chain of flowers intended to symbolize all sensible things; within this garland there is the figure of a woman, whom the wind has girt about the loins with a light scarf, and this is all her vesture. She is in the act of dancing, and has a wand in either hand. It is eloquent as an image of the swirl of the sensitive life, of joy attained in the body, of the soul's intoxication in the earthly paradise, but still guarded by the Divine Watchers, as if by the powers and the graces of the Holy Name, Tetragammaton,---those four ineffable letters which are sometimes attributed to the mystical beasts. Eliphas Lévi calls the garland a crown, and reports that the figure represents Truth. Dr. Papus connects it with the Absolute and the realization of the Great Work; for yet others it is a symbol of humanity and the eternal reward of a life that has been spent well. It should be noted that in the four quarters of the garland there are four flowers distinctively marked. According to P. Christian, the garland should be formed of roses, and this is the kind of chain which Eliphas Lévi says is less easily broken than a chain of iron. Perhaps by antithesis, but for the same reason, the iron crown of Peter may lie more lightly on the heads of sovereign pontiffs than the crown of gold on kings.
As this final message of the Major Trumps is unchanged---and indeed unchangeable---in respect of its design, it has been partly described already regarding its deeper sense. It represents also the perfection and end of the Cosmos, the secret which is within it, the rapture of the universe when it understands itself in God (Nature). It is further the state of the soul in the consciousness of Divine Vision, reflected from the self-knowing spirit. But these meanings are without prejudice to that which I have said concerning it on the material side.
It has more than one message on the macrocosmic side and is, for example, the state of the restored world when the law of manifestation shall have been carried to the highest degree of natural perfection. But it is perhaps more especially a story of the past, referring to that day when all was declared to be good, when the morning stars sang together and all the Sons of God (Nature) shouted for joy. One of the worst explanations concerning it is that the figure symbolizes the Magus when he has reached the highest degree of initiation; another account says that it represents the absolute, which is ridiculous. The figure has been said to stand for Truth, which is, however, more properly allocated to the seventeenth card. Lastly, it has been called the Crown of the Magi.
-- L. W. de Laurence (1918)!!! King of Wands
The physical and emotional nature to which this card is attributed is dark, ardent, lithe, animated, impassioned, noble. The King uplifts a flowering wand, and wears, like his three correspondences in the remaining suits, what is called a cap of maintenance beneath his crown. He connects with the symbol of the lion, which is emblazoned on the back of his throne.!!! Queen of Wands
The Wands throughout this suit are always in leaf, as it is a suit of life and animation. Emotionally and otherwise, the Queen's personality corresponds to that of the King, but is more magnetic.!!! Knight of Wands
He is shown as if upon a journey, armed with a short wand, and although mailed is not on a warlike errand. He is passing mounds or pyramids. The motion of the horse is a key to the character of its rider, and suggests the precipitate mood, or things connected therewith.!!! Page of Wands
In a scene similar to the Knight's, a young man stands in the act of proclamation. He is unknown but faithful, and his tidings are strange.!!! Ace of Wands
A hand issuing from a cloud grasps a stout wand or club.!!! Two of Wands
A tall man looks from a battlemented roof over sea and shore; he holds a globe in his right hand, while a staff in his left rests on the battlement; another is fixed in a ring. The Rose and Cross and Lily should be noticed on the left side.!!! Three of Wands
A calm, stately personage, with his back turned, looking from a cliff's edge at ships passing over the sea. Three staves are planted in the ground, and he leans slightly on one of them.!!! Four of Wands
From the four great staves planted in the foreground there is a great garland suspended; two female figures uplift nosegays; at their side is a bridge over a moat, leading to an old manorial house.!!! Five of Wands
A posse of youths, who are brandishing staves, as if in sport or strife. It is mimic warfare, and hereto correspond the!!! Six of Wands
A laurelled horseman bears one staff adorned with a laurel crown; footmen with staves are at his side.!!! Seven of Wands
A young man on a craggy eminence brandishing a staff; six other staves are raised towards him from below.!!! Eight of Wands
The card represents motion through the immovable---a flight of wands through an open country; but they draw to the term of their course. That which they signify is at hand; it may be even on the threshold.!!! Nine of Wands
The figure leans upon his staff and has an expectant look, as if awaiting an enemy. Behind are eight other staves---erect, in orderly disposition, like a palisade.!!! Ten of Wands
A man oppressed by the weight of the ten staves which he is carrying.!!! King of Cups
He holds a short scepter in his left hand and a great cup in his right; his throne is set upon the sea; on one side a ship is riding and on the other a dolphin is leaping. The implicit is that the Sign of the Cup naturally refers to water, which appears in all the court cards.!!! Queen of Cups
Beautiful, fair, dreamy---as one who sees visions in a cup. This is, however, only one of her aspects; she sees, but she also acts, and her activity feeds her dream.!!! Knight of Cups
Graceful, but not warlike; riding quietly, wearing a winged helmet, referring to those higher graces of the imagination which sometimes characterize this card. He too is a dreamer, but the images of the side of sense haunt him in his vision!!! Page of Cups
A fair, pleasing, somewhat effeminate page, of studious and intent aspect, contemplates a fish rising from a cup to look at him. It is the pictures of the mind taking form.!!! Ace of Cups
The waters are beneath, and thereon are water-lilies; the hand issues from the cloud, holding in its palm the cup, from which four streams are pouring; a dove, bearing in its bill a cross-marked Host, descends to place the Wafer in the Cup; the dew of water is falling on all sides. It is an intimation of that which may lie behind the Lesser Arcana.!!! Two of Cups
A youth and maiden are pledging one another, and above their cups rises the Caduceus of Hermes, between the great wings of which there appears a lion's head. It is a variant of a sign which is found in a few old examples of this card. Some curious emblematical meanings are attached to it, but they do not concern us in this place.!!! Three of Cups
Maidens in a garden-ground with cups uplifted, as if pledging one another.!!! Four of Cups
A young man is seated under a tree and contemplates three cups set on the grass before him; an arm issuing from a cloud offers him another cup. His expression notwithstanding is one of discontent with his environment.!!! Five of Cups
A dark, cloaked figure, looking sideways at three prone cups; two others stand upright behind him; a bridge is in the background, leading to a small keep or holding.!!! Six of Cups
Children in an old garden, their cups filled with flowers.!!! Seven of Cups
Strange chalices of vision, but the images are more especially those of the fantastic spirit.!!! Eight of Cups
A man of dejected aspect is deserting the cups of his felicity, enterprise, undertaking or previous concern.!!! Nine of Cups
A goodly personage has feasted to his heart's content, and abundant refreshment of wine is on the arched counter behind him, seeming to indicate that the future is also assured. The picture offers the material side only, but there are other aspects.!!! Ten of Cups
Appearance of Cups in a rainbow; it is contemplated in wonder and ecstasy by a man and woman below, evidently husband and wife. His right arm is about her; his left is raised upward; she raises her right arm. The two children dancing near them have not observed the prodigy but are happy after their own manner. There is a home-scene beyond.!!! King of Swords
He sits in judgment, holding the unsheathed sign of his suit. He recalls, of course, the conventional Symbol of Justice in the Trumps Major, and he may represent this virtue, but he is rather the power of life and death, in virtue of his office.!!! Queen of Swords
Her right hand raises the weapon vertically and the hilt rests on an arm of her royal chair; the left hand is extended, the arm raised; her countenance is severe but chastened; it suggests familiarity with sorrow. It does not represent mercy, and, her sword notwithstanding, she is scarcely a symbol of power.!!! Knight of Swords
He is riding in full course, as if scattering his enemies. In the design he is really a proto-typical hero of romantic chivalry. He might almost be Galahad, whose sword is swift and sure because he is clean of heart.!!! Page of Swords
A lithe, active figure holds a sword upright in both hands, while in the act of swift walking. He is passing over rugged land, and about his way the clouds are collocated wildly. He is alert and lithe, looking this way and that, as if an expected enemy might appear at any moment.!!! Ace of Swords
A hand issues from a cloud, grasping a sword, the point of which is encircled by a crown.!!! Two of Swords
A hoodwinked female figure balances two swords upon her shoulders.!!! Three of Swords
Three swords piercing a heart; cloud and rain behind.!!! Four of Swords
The effigy of a knight in the attitude of prayer, at full length upon his tomb.!!! Five of Swords
A disdainful man looks after two retreating and dejected figures. Their swords lie upon the ground. He carries two others on his left shoulder, and a third sword is in his right hand, point to earth. He is the master in possession of the field.!!! Six of Swords
A ferryman carrying passengers in his punt to the further shore. The course is smooth, and seeing that the freight is light, it may be noted that the work is not beyond his strength.!!! Seven of Swords
A man in the act of carrying away five swords rapidly; the two others of the card remain stuck in the ground. A camp, is close at hand.!!! Eight of Swords
A woman, bound and hoodwinked, with the swords of the card about her. Yet it is rather a card of temporary durance than of irretrievable bondage.!!! Nine of Swords
One seated on her couch in lamentation, with the swords over her. She is as one who knows no sorrow which is like unto hers. It is a card of utter desolation.!!! Ten of Swords
A prostrate figure, pierced by all the swords belonging to the card.!!! King of Pentacles
The face of this figure is dark, suggesting courage, and the bull's head should be noted as a recurrent symbol on the throne. The sign of this suit is represented throughout as engraved with the pentigram, typifying the correspondence of the four elements in human nature and that by which they may be governed. In old Tarot packs this suit represented money. The consensus of divinatory meanings is on the side of change, as the cards do not deal especially with questions of money.!!! Queen of Pentacles
The face suggests that of a dark woman, whose qualities might be summed up in the idea of greatness of soul; she has also the serious cast of intelligence; she contemplates her symbol and may see worlds therein.!!! Knight of Pentacles
He rides a slow, enduring, heavy horse, to which his own aspect corresponds. He exhibits his symbol, but does not look therein.!!! Page of Pentacles
A youthful figure, looking intently at the pentacle which hovers over his raised hands. He moves slowly, insensible of that which is about him.!!! Ace of Pentacles
A hand---issuing, as usual, from a cloud---holds up a pentacle.!!! Two of Pentacles
A young man, in the act of dancing, has a pentacle in either hand, and they are joined by that endless cord which is like the number 8 reversed.!!! Three of Pentacles
A sculptor at his work in a monastery. Compare the design which illustrates the Eight of Pentacles. The apprentice or amateur therein has received his reward and is now at work in earnest.!!! Four of Pentacles
A crowned figure, having a pentacle over his crown, clasps another with hands and arms; two pentacles are under his feet. He holds to that which he has.!!! Five of Pentacles
Two mendicants in a snowstorm pass a lighted casement.!!! Six of Pentacles
A person in the guise of a merchant weighs money in a pair of scales and distributes it to the needy and distressed. It is a testimony to his own success in life, as well as his goodness of heart.!!! Seven of Pentacles
A young man, leaning on his staff, looks intently at seven pentacles attached to a clump of greenery on his right; one would say that these were his treasures and that his heart was there.!!! Eight of Pentacles
An artist in stone at his work, which he exhibits in the form of trophies.!!! Nine of Pentacles
A woman, with a bird upon her wrist, stands amidst a great abundance of grape-vines in the garden of a manorial house. It is a wide domain, suggesting plenty in all things. Possibly it is her own possession and testifies to material well-being.!!! Ten of Pentacles
A man and woman beneath an archway which gives entrance to a house and domain. They are accompanied by a child, who looks curiously at two dogs accosting an ancient personage seated in the foreground. The child's hand is on one of them.@@.header;
!! Choose a Significator
Previous: [[Introduction]], Next: [[Shuffle and Spreads]]
@@
Please choose a Significator before performing a Query. This is particularly important for complex Spreads like the Celtic Cross, but not necessary for the simpler Spreads. If you proceed without choosing one, subsequent Spreads might include extraneous effects due to the presence of the Card which would have been the Significator. You may set or change the Significator at any time by returning to this page by way of the [[Table of Contents]]. However, the Cards must (will) be reshuffled when you do that.
Initial step:
Are these Queries in regard to a [[person|ChoosePersonalSignificator]] or to a [[situation|ChooseSituationalSignificator]]?
@@.footer;
Previous: [[Introduction]], Next: [[Shuffle and Spreads]]
@@@@.header;
!! Choose a Personal Significator
Previous: [[Choose A Significator]], Next (skip Significator choice): [[Shuffle and Spreads]]
@@
<<set $sigType = "Personal">>
Please choose the Card below which you feel best represents the person's temperament or physical characteristics.
/*----
<<set _myNcard = 21>>
<<linkCard _myNcard cardInfo>>
----
*/<<silently>>
<<set $QuerySignificator to undefined>>
<<set _color = ["Ardent/Animated or Pale","Responsible/Creative/Indolent or Tan","Authoritative/Energetic or Dark","Valorous/Intelligent or Very Dark"]>>
<<set _nsuite = 22 - 4 >>
<</silently>>
<<nobr>>
<table>
<tr>
<td>
Maturity -->
<br>------------------<br>
Temperament<br>or Coloration
</td>
<td style="text-align:center"> Child.</td>
<td style="text-align:center"> Retired or still maturing.</td>
<td style="text-align:center"> Mature woman.</td>
<td style="text-align:center"> Mature man.</td>
<td>
<-- Maturity
<br>------------------<br>
Temperament
<br>or Coloration
</td>
</tr>
<<for _row = 0; _row < 4; _row++>>
<tr><td><<print _color[_row]>> </td>
<<set _nsuite = _nsuite + 14>>
<<for _column = 0; _column < 4; _column++>>
<<set _myNcard = _nsuite + _column>>
<td>
<<linkCard _myNcard PotentialSignificator >>
</td>
<</for>>
<td><<print _color[_row]>> </td>
</tr>
<</for>>
<tr>
<td>
Temperament<br>or Coloration
<br>------------------<br>
Maturity -->
</td>
<td style="text-align:center"> Child.</td>
<td style="text-align:center"> Retired or still maturing.</td>
<td style="text-align:center"> Mature woman.</td>
<td style="text-align:center"> Mature man.</td>
<td>
Temperament<br>or Coloration
<br>------------------<br>
<-- Maturity
</td>
</tr>
</table>
<</nobr>>
@@.footer;
Previous: [[Choose A Significator]],
Next (skip Significator choice): [[Shuffle and Spreads]]
@@@@.header;
!! Choose a Situational Significator
Previous: [[Choose A Significator]],
Next (skip Significator choice): [[Shuffle and Spreads]]
@@
<<set $sigType = "Situational">>
Please choose the Card which best describes the situation surrounding the Query.
<<nobr>>
<center><table>
<tr>
<td align="right">
[[Major Arcana|ChooseMA]]</td><td>Life changing events</td>
</tr>
<tr>
<td align="right">
[[Wands|ChooseWand]]</td><td> life, family, competition, travel</td>
</tr>
<tr>
<td align="right">
[[Cups|ChooseCup]]</td><td> learning, memories, home, family, friendship</td>
</tr>
<tr>
<td align="right">
[[Swords|ChooseSword]]</td><td> relationships, travel</td>
</tr>
<tr>
<td align="right">
[[Pentacles|ChoosePentacle]]</td><td> finance, employment, family, artistry, recreation</td>
</tr>
</table></center>
<</nobr>>
@@.footer;
Previous: [[Choose A Significator]],
Next (skip Significator choice): [[Shuffle and Spreads]]
@@@@.header;
Please Choose a Significator
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@
.
<<nobr>>
<<for _i = 0; _i <= 21; _i = _i + 1>>
<<linkCard _i PotentialSignificator >>
<</for>>
<</nobr>>
@@.footer;
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@@@.header;
Please Choose a Significator
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@
.
<<nobr>>
<<set _first = 22>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i PotentialSignificator >>
<</for>>
<</nobr>>
@@.footer;
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@@@.header;
Please Choose a Significator
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@
.
<<nobr>>
<<set _first = 22 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i PotentialSignificator >>
<</for>>
<</nobr>>
@@.footer;
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@@@.header;
Please Choose a Significator
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@
.
<<nobr>>
<<set _first = 22 + 14 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i PotentialSignificator >>
<</for>>
<</nobr>>
@@.footer;
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@@@.header;
Please Choose a Significator
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@
.
<<nobr>>
<<set _first = 22 + 14 + 14 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i PotentialSignificator >>
<</for>>
<</nobr>>
@@.footer;
Back to [[Situational Significators|ChooseSituationalSignificator]]
@@!!! The Fool: Card 0 Reversed
Negligence, absence, distribution, carelessness, apathy, nullity, vanity.!!! The Magician: Card I Reversed
Physician, Magus, mental disease, disgrace, disquiet.!!! The High Priestess: Card II Reversed
Passion, moral or physical ardor, conceit, surface knowledge.!!! The Empress: Card III Reversed
Light, truth, the unravelling of involved matters, public rejoicings; according to another reading, vacillation.!!! The Emperor: Card IV Reversed
Benevolence, compassion, credit; also confusion to enemies, obstruction, immaturity.!!! The Hermit: Card IX Reversed
Concealment, disguise, policy, fear, unreasoned caution.!!! The Hierophant: Card V Reversed
Society, good understanding, concord, over-kindness, weakness.!!! The Lovers: Card VI Reversed
Failure, foolish designs. Another account speaks of marriage frustrated and contrarieties of all kinds.!!! The Chariot: Card VII Reversed
Riot, quarrel, dispute, litigation, defeat.!!! Strength: Card VIII Reversed
Despotism, abuse of power, weakness, discord, sometimes even disgrace.!!! Wheel of Fortune: Card X Reversed
Increase, abundance, superfluity!!! Justice: Card XI Reversed
Law in all its departments, legal complications, bigotry, bias, excessive severity.!!! The Hanged Man: Card XII Reversed
Selfishness, the crowd, body politic.!!! Death: Card XIII Reversed
Inertia, sleep, lethargy, petrifaction, somnambulism; hope destroyed.!!! Temperance: Card XIV Reversed
Things connected with churches, religions, sects, the priesthood, sometimes even the priest who will marry the Querent; also disunion, unfortunate combinations, competing interests.!!! The Sun: Card XIX Reversed
Material happiness, fortunate marriage, contentment, but in a lesser sense.!!! The Devil: Card XV Reversed
Evil fatality, weakness, pettiness, blindness.!!! The Tower: Card XVI Reversed
Misery, distress, indigence, adversity, calamity, disgrace, deception, ruin. It is a card in particular of unforeseen catastrophe.
According to one account, the same in a lesser degree; also oppression, imprisonment, tyranny.!!! The Star: Card XVII Reversed
Arrogance, haughtiness, impotence.!!! The Moon: Card XVIII Reversed
Instability, inconstancy, silence, lesser degrees of deception and error.!!! Judgement: Card XX Reversed
Weakness, pusillanimity, simplicity; also deliberation, decision, sentence.!!! The World: Card XXI Reversed
Inertia, fixity, stagnation, permanence.
/*---------------------------------------*/!!! The Fool: Card 0 Upright
Folly, mania, extravagance, intoxication, delirium, frenzy, bewrayment.!!! The Magician: Card I Upright
Skill, diplomacy, address, subtlety; sickness, pain, loss, disaster, snares of enemies; self-confidence, will; the Querent, if male.!!! The High Priestess: Card II Upright
Secrets, mystery, the future as yet unrevealed; the woman who interests the Querent, if male; the Querent herself, if female; silence, tenacity; mystery, wisdom, science.!!! The Empress: Card III Upright
Fruitfulness, action, initiative, length of days; the unknown, clandestine; also difficulty, doubt, ignorance.!!! The Emperor: Card IV Upright
Stability, power, protection, realization; a great person; aid, reason, conviction; also authority and will.!!! The Hermit: Card IX Upright
Prudence, circumspection; also and especially treason, dissimulation, roguery, corruption.!!! The Hierophant: Card V Upright
Marriage, alliance, captivity, servitude; by another account, mercy and goodness; inspiration; the man to whom the Querent has recourse.!!! The Lovers: Card VI Upright
Attraction, love, beauty, trials overcome.!!! The Chariot: Card VII Upright
Succor, providence; also war, triumph, presumption, vengeance, trouble.!!! Strength: Card VIII Upright
Power, energy, action, courage, magnanimity; also complete success and honors.!!! Wheel of Fortune: Card X Upright
Destiny, fortune, success, elevation, luck, felicity.!!! Justice: Card XI Upright
Equity, rightness, probity, executive; triumph of the deserving side in law.!!! The Hanged Man: Card XII Upright
Wisdom, circumspection, discernment, trials, sacrifice, intuition, divination, prophecy.!!! Death: Card XIII Upright
End, mortality, destruction, corruption; also, for a man, the loss of a benefactor; for a woman, many contrarieties; for a maid, failure of marriage projects.!!! Temperance: Card XIV Upright
Economy, moderation, frugality, management, accommodation.!!! The Sun: Card XIX Upright
Material happiness, fortunate marriage, contentment.!!! The Devil: Card XV Upright
Ravage, violence, vehemence, extraordinary efforts, force, fatality; that which is predestined but is not for this reason evil.!!! The Tower: Card XVI Upright
Misery, distress, indigence, adversity, calamity, disgrace, deception, ruin. It is a card in particular of unforeseen catastrophe.!!! The Star: Card XVII Upright
Loss, theft, privation, abandonment; another reading says---hope and bright prospects.!!! The Moon: Card XVIII Upright
Hidden enemies, danger, calumny, darkness, terror, deception, occult forces, error.!!! Judgement: Card XX Upright
Change of position, renewal, outcome. Another account specifies total loss through lawsuit.!!! The World: Card XXI Upright
Assured success, recompense, voyage, route, emigration, flight, change of place.@@.header;
!! Potential Significator
Is this the Significator you want?
[[Yes|Shuffle and Spreads]] --- \
<<if $sigType eq "Personal">> \
<<link "No" "ChoosePersonalSignificator">> \
<<set $QuerySignificator = -100 >> \
<</link>> \
<<else>> \
<<link "No" "ChooseSituationalSignificator">> \
<<set $QuerySignificator = -200 >> \
<</link>> \
<</if>>
@@
<<set $QuerySignificator = $thisNcard>>
.
This is card $QuerySignificator -- $cardName[$QuerySignificator]
<<include cardInfo>>
@@.footer;
Is this the Significator you want?
[[Yes|Shuffle and Spreads]] --- \
<<if $sigType eq "Personal">> \
<<link "No" "ChoosePersonalSignificator">> \
<<set $QuerySignificator = -100 >> \
<</link>> \
<<else>> \
<<link "No" "ChooseSituationalSignificator">> \
<<set $QuerySignificator = -200 >> \
<</link>> \
<</if>>
@@
/*----------------------------------*/<<linkCard $thisNcard showCardInfo $thisAngle>>
/*----------------------------------*/<<set _name = $cardPsg[$thisNcard]>>
<<set _gen = _name + "_Text_Generic">>
<<hidden "Show description" _gen "Hide description.">>
/*----------------------------------*/<<set _name = $cardPsg[$thisNcard]>>
<<set _upr = _name + "_Text_Upright">>
<<include _upr>><<set _name = $cardPsg[$thisNcard]>>
<<set _rev = _name + "_Text_Reversed">>
<<include _rev>>
/*----------------------------------*/@@.header;
<<if $thisAngle < 178>>
!! $cardName[$thisNcard] Upright \
<<elseif $thisAngle > 179>>
!! $cardName[$thisNcard] Reversed \
<<else>>
!! $cardName[$thisNcard]
<</if>><<return>>
@@
<<include cardPic>>
<<include cardDescription>>
<<if $thisAngle is undefined or $thisAngle < 178>>
<<include infoUpright>> <</if>>
<<if $thisAngle is undefined or $thisAngle > 179>>
<<include infoReversed>> <</if>>
@@.footer;
<<return>>
@@
/*----------------------------------*/@@.header;
!! $cardName[$thisNcard]
<<return>>
@@
<<include cardInfo>>
@@.footer;
<<return>>
@@
/*----------------------------------*/<<include cardPic>>
<<include cardDescription>>
<<include infoUpright>>
<<include infoReversed>>@@.header;
!!10-Card Celtic Cross Spread
[[Translation|CC Translation]] -- Choose [[a Different Spread|1A]] -- [[Shuffle again.|Shuffle and Spreads]]
@@
!!!!Representations:
.
<<nobr>><<silently>>
<<set _label = []>>
<<set _label[0] = "Present Condition">>
<<set _label[1] = "Current Obstacles">>
<<set _label[2] = "Best Outcome">>
<<set _label[3] = "Condition's Cause">>
<<set _label[4] = "Immediate Past">>
<<set _label[5] = "Immediate Future">>
<<set _label[6] = "How You Relate">>
<<set _label[7] = "Current Surroundings">>
<<set _label[8] = "Hopes or Fears">>
<<set _label[9] = "Final Result">>
<<set _versage = []>>
<<set _versage[0] = "This covers him.">>
<<set _versage[1] = "This crosses him.">>
<<set _versage[2] = "This crowns him.">>
<<set _versage[3] = "This is beneath him.">>
<<set _versage[4] = "This is behind him.">>
<<set _versage[5] = "This is before him.">>
<<set _versage[6] = "This signifies you.">>
<<set _versage[7] = "This is your 'house'.">>
<<set _versage[8] = "Your hopes or fears.">>
<<set _versage[9] = "What will come.">>
/* notes for rearranging card positions
* to be compatible with 5-card temporal presentatoin
*
* from shuffle = (index in cross/staff)
* distant past = 0 (3)
* recent past = 3 (4)
* present = 1 (0)
* near future = 4 (5)
* far future = 2 (9)
* unassigned:
* 5 (1)
* 6 (2)
* 7 (6)
* 8 (7)
* 9 (8)
*/
<</silently>>
<<for _L=0; _L<4; _L++>>
<<- _label[_L] + ", ">>
<</for>>
<<- _label[4]>>
<</nobr>>
<<nobr>>
<<for _L =5; _L<9; _L++>>
<<- _label[_L] + ", ">>
<</for>>
<<- _label[9]>>
<</nobr>>
----
<<link "Notes">><<toggleclass "#hidden" "hide">><</link>> <div id="hidden" class="hide">
* The effects of any recurring Card values are noted at the bottom of the [[Translation|CC Translation]].
* Below, the Significator of the Query itself is referenced as "him".
* If no Significator has been chosen for this Query, this Spread might include extraneous effects. [[Choose a Significator|Choose A Significator]].
* The Query's Significator is not directly related to the Querant's Significator. The latter is included as the base of the Staff, which is to the right of the Cross. You might need to scroll your browser's window to see it.
* For more information about the Celtic Cross Spread, please consult the [[Explanation|Celtic Cross Explanation]] by L. W. de Laurence (1918).
<p><<link "Hide notes.">><<toggleclass "#hidden" "hide">><</link>></p></div>
----
<<if $QuerySignificator < 0 >>
Warning: No Significator has been chosen. (< 0)
[[Choose a Significator|Choose A Significator]]
After choosing one, the Cards must (will) be reshuffled, too
QuerySignificator:
Naked: $QuerySignificator
Printed: <<print "$QuerySignificator">>
<<elseif ndef $QuerySignificator >>
Warning: No Significator has been chosen. (ndef)
[[Choose a Significator|Choose A Significator]]
After choosing one, the Cards must (will) be reshuffled, too.
QuerySignificator:
Naked: $QuerySignificator
Printed: <<print "$QuerySignificator">>
<<elseif $QuerySignificator > 77 >>
Warning: Invalid Significator (> 77)
[[Choose a Significator|Choose A Significator]]
After choosing one, the Cards must (will) be reshuffled, too.
QuerySignificator:
Naked: $QuerySignificator
Printed: <<print "$QuerySignificator">>
<<elseif $QuerySignificator >= 0 >>
The Query's Significator is Card # <<print "$QuerySignificator">>.
/*<<linkCard $QuerySignificator showCard >>*/
<<else>>
Warning: Invalid Significator (its value is not recognized)
[[Choose a Significator|Choose A Significator]]
After choosing one, the Cards must (will) be reshuffled, too.
Naked: $QuerySignificator
Printed: <<print "$QuerySignificator">>
<</if>>
----
<<nobr>>
<table>
<tr>
<td></td>
<td style="text-align:center">
<b>The Cross</b>
<<- "------------------------------------">>
</td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
<b>The Staff</b>
<<- "------------------------------------">>
</td>
</tr>
/* top-most Cross and Staff cards */
<tr>
<td></td>
<td style="text-align:center">
_label[2]
</td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
_label[9]
</td>
</tr>
<tr>
<td></td>
<td>
<<set _lclCard = 6>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
<td></td>
<td></td>
<td>[img[narrow]]</td>
<td>
<<set _lclCard = 2>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
</tr>
<tr>
<td></td>
<td style="text-align:center">
$reversed[6]<br>
_versage[2]
<<- "------------------------------------">>
</td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
$reversed[2]<br>
_versage[9]
<<- "------------------------------------">>
</td>
</tr>
<tr>
<td style="text-align:center">
_label[5]
</td>
<td style="text-align:center">
_label[0]
</td>
<td style="text-align:center">
_label[1]
</td>
<td style="text-align:center">
_label[4]
</td>
<td></td>
<td style="text-align:center">
_label[8]
</td>
</tr>
<tr>
<td>
/* make room for tilted "this crosses him" card */
<div style="position: relative; width: 350px;">
<img class="onbot" data-passage="narrow">
/* this is before him */
<<set _lclCard = 4>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<set _mymid = "onmid" + _myAngle>>
<<linkCardStack _myNcard showCard _myAngle _mymid>>
</div>
</td>
<td style="text-align:center">
/* cards atop the Significator */
<div style="position: relative; width: 350px;">
<img class="onbot" data-passage="narrow">
/* this is him (the significator) */
<<set _myNcard = $QuerySignificator>>
<<set _myAngle = 0 >>
<<set _myHeight = "onlow0" >>
<<linkCardStack _myNcard showCard _myAngle _myHeight>>
/* this covers him */
<<set _lclCard = 1>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<set _myLevel = "onmid" + _myAngle>>
<<linkCardStack _myNcard showCard _myAngle _myLevel>>
/* this crosses him */
<<set _lclCard = 5>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<set _myLevel = "ontop" + _myAngle>>
<<linkCardStack _myNcard showCard _myAngle _myLevel>>
</div>
</td>
<td style="width: 100">
/* shrink space prevoiusly occupied by "crosses him" card */
[img[narrow]]
</td>
<td>
/* this is behind him */
<<set _lclCard = 3>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
<td></td>
<td>
/* your hopes or fears */
<<set _lclCard = 9>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
</tr>
<tr>
<td style="text-align:center">
$reversed[4] <br>
_versage[5]
</td>
<td style="text-align:center">
$reversed[1] <br>
_versage[0]
<<- "------------------------------------">>
</td>
<td style="text-align:center">
$reversed[5] <br>
_versage[1]
</td>
<td style="text-align:center">
$reversed[3]<br>
_versage[4]
</td>
<td></td>
<td style="text-align:center">
$reversed[9] <br>
_versage[8]
<<- "------------------------------------">>
</td>
</tr>
<tr>
<td></td>
<td style="text-align:center">
_label[3]
</td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
_label[7]
</td>
</tr>
<tr>
<td></td>
<td>
<<set _lclCard = 0>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
<td></td>
<td></td>
<td></td>
<td>
<<set _lclCard = 8>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
</tr>
<tr>
<td></td>
<td style="text-align:center">
$reversed[0]<br>
_versage[3]
</td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
$reversed[8] <br>
_versage[7]
<<- "------------------------------------">>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
_label[6]
</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>
<<set _lclCard = 7>>
<<set _myNcard = $cardN[_lclCard]>>
<<set _myAngle = $angle[_lclCard] >>
<<linkCard _myNcard showCard _myAngle >>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td style="text-align:center">
$reversed[7] <br>
_versage[6]
</td>
</tr>
</table>
<</nobr>>
@@.footer;
[[Translation|CC Translation]] -- Choose [[a Different Spread|1A]] -- [[Shuffle again.|Shuffle and Spreads]]
@@
/*============================================================*/@@.header;
!! Explanation of the Celtic Cross Spread
by L. W. de Laurence (1918)
<<return>>
@@
This mode of divination is the most suitable for obtaining an answer to a definite question. The Diviner first selects a card to represent the person or matter about which inquiry is made. This card is called the Significator. Should he wish to ascertain something in connection with himself he takes the one which corresponds to his personal description. A Knight should be chosen as the Significator if the subject of inquiry is a man of forty years old and upward; A King should be chosen for any male who is under that age; a Queen for a woman over forty years; and a Page for any female of less age.
The four Court Cards in Wands represent very fair people, with yellow or auburn hair, fair complexion and blue eyes. The Court Cards in Cups signify people with light brown or dull fair hair and grey or blue eyes. Those in Swords stand for people having hazel or grey eyes, dark brown hair and dull complexion. Lastly, the Court Cards in Pentacles are referred to persons with very dark brown or black hair, dark eyes and sallow or swarthy complexions. These allocations are subject, however, to the following reserve, which will prevent them being taken too conventionally. You can be guided on occasion by the known temperament of a person; one who is exceedingly dark may be very energetic, and would be better represented by a Sword card than a Pentacle. On the other hand, a very fair subject who is indolent and lethargic should be referred to Cups rather than to Wands.
If it is more convenient for the purpose of a divination to take as the Significator the matter about which inquiry is to be made, that Trump or small card should be selected which has a meaning corresponding to the matter. Let it be supposed that the question is: Will a lawsuit be necessary? In this case, take the Trump No. 11, or Justice, as the Significator. This has reference to legal affairs. But if the question is: Shall I be successful in my lawsuit? one of the Court Cards must be chosen as the Significator. Subsequently, consecutive divinations may be performed to ascertain the course of the process itself and its result to each of the parties concerned.
<center>[img[celtic_cross_diagram]]</center>
Having selected the Significator, place it on the table, face upwards. Then shuffle and cut the rest of the pack three times, keeping the faces of the cards downwards.
Turn up the top or <b>First Card</b> of the pack; cover the Significator with it, and say: This covers him. This card gives the influence which is affecting the person or matter of inquiry generally, the atmosphere of it in which the other currents work.
Turn up the <b>Second Card</b> and lay it across the <b>First</b>, saying: This crosses him. It shows the nature of the obstacles in the matter. If it is a favorable card, the opposing forces will not be serious, or it may indicate that something good in itself will not be productive of good in the particular connection.
Turn up the <b>Third Card</b>; place it above the Significator, and say: This crowns him. It represents
//a//: the Querent's aim or ideal in the matter;
//b//: the best that can be achieved under the circumstances, but that which has not yet been made actual.
Turn up the <b>Fourth Card</b>; place it below the Significator, and say: This is beneath him. It shows the foundation or basis of the matter, that which has already passed into actuality and which the Significator has made his own.
Turn up the <b>Fifth Card</b>; place it on the side of the Significator from which he is looking, and say: This is behind him. It gives the influence that is just passed, or is now passing away.
<b><i>N. B.</i></b>---If the Significator is a Trump or any small card that cannot be said to face either way, the Diviner must decide before beginning the operation which side he will take it as facing.
Turn up the <b>Sixth Card</b>; place it on the side that the Significator is facing, and say: This is before him. It shows the influence that is coming into action and will operate in the near future.
The cards are now disposed in the form of a cross, the Significator---covered by the <b>First Card</b>---being in the center.
The next four cards are turned up in succession and placed one above the other in a line, on the right hand side of the cross.
The first of these, or the <b>Seventh Card</b> of the operation, signifies himself---that is, the Significator---whether person or thing---and shows its position or attitude in the circumstances.
The <b>Eighth Card</b> signifies his house, that is, his environment and the tendencies at work therein which have an effect on the matter---for instance, his position in life, the influence of immediate friends, and so forth.
The <b>Ninth Card</b> gives his hopes or fears in the matter.
The <b>Tenth</b> is what will come, the final result, the culmination which is brought about by the influences shown by the other cards that have been turned up in the divination.
It is on this card that the Diviner should especially concentrate his intuitive faculties and his memory in respect of the official divinatory meanings attached thereto. It should embody whatsoever you may have divined from the other cards on the table, including the Significator itself and concerning him or it, not excepting such lights upon higher significance as might fall like sparks from heaven if the card which serves for the oracle, the card for reading, should happen to be a Trump Major.
The operation is now completed; but should it happen that the last card is of a dubious nature, from which no final decision can be drawn, or which does not appear to indicate the ultimate conclusion of the affair, it may be well to repeat the operation, taking in this case the Tenth Card as the Significator, instead of the one previously used. The pack must be again shuffled and cut three times and the first ten cards laid out as before. By this a more detailed account of "What will come" may be obtained.
If in any divination the Tenth Card should be a Court Card, it shows that the subject of the divination falls ultimately into the hands of a person represented by that card, and its end depends mainly on him. In this event also it is useful to take the Court Card in question as the Significator in a fresh operation, and discover what is the nature of his influence in the matter and to what issue he will bring it.
Great facility may be obtained by this method in a comparatively short time, allowance being always made for the gifts of the operator---that is to say, his faculty of insight, latent or developed---and it has the special advantage of being free from all complications.
@@.footer;
<<return>>
@@<<set _nKingsTxt = []>>
<<set _nKingsTxt[4] = "4 Kings = great honor">>
<<set _nKingsTxt[3] = "3 Kings = consultation">>
<<set _nKingsTxt[2] = "2 Kings = minor counsel">>
<<set _nQueensTxt = []>>
<<set _nQueensTxt[4] = "4 Queens = great debate">>
<<set _nQueensTxt[3] = "3 Queens = deception by women">>
<<set _nQueensTxt[2] = "2 Queens = sincere friends">>
<<set _nKnightsTxt = []>>
<<set _nKnightsTxt[4] = "4 Knights = serious matters">>
<<set _nKnightsTxt[3] = "3 Knights = lively debate">>
<<set _nKnightsTxt[2] = "2 Knights = intimacy">>
<<set _nPagesTxt = []>>
<<set _nPagesTxt[4] = "4 Pages = dangerous illness">>
<<set _nPagesTxt[3] = "3 Pages = dispute">>
<<set _nPagesTxt[2] = "2 Pages = disquiet">>
<<set _nTensTxt = []>>
<<set _nTensTxt[4] = "4 Tens = condemnation">>
<<set _nTensTxt[3] = "3 Tens = new condition">>
<<set _nTensTxt[2] = "2 Tens = change">>
<<set _nNinesTxt = []>>
<<set _nNinesTxt[4] = "4 Nines = a good friend">>
<<set _nNinesTxt[3] = "3 Nines = success">>
<<set _nNinesTxt[2] = "2 Nines = receipt">>
<<set _nEightsTxt = []>>
<<set _nEightsTxt[4] = "4 Eights = reverse">>
<<set _nEightsTxt[3] = "3 Eights = marriage">>
<<set _nEightsTxt[2] = "2 Eights = new knowledge">>
<<set _nSevensTxt = []>>
<<set _nSevensTxt[4] = "4 Sevens = intrigue">>
<<set _nSevensTxt[3] = "3 Sevens = infirmity">>
<<set _nSevensTxt[2] = "2 Sevens = news">>
<<set _nSixesTxt = []>>
<<set _nSixesTxt[4] = "4 Sixes = abundance">>
<<set _nSixesTxt[3] = "3 Sixes = success">>
<<set _nSixesTxt[2] = "2 Sixes = irritability">>
<<set _nFivesTxt = []>>
<<set _nFivesTxt[4] = "4 Fives = regularity">>
<<set _nFivesTxt[3] = "3 Fives = determination">>
<<set _nFivesTxt[2] = "2 Fives = vigils">>
<<set _nFoursTxt = []>>
<<set _nFoursTxt[4] = "4 Fours = journey near at hand">>
<<set _nFoursTxt[3] = "3 Fours = a subject of reflection">>
<<set _nFoursTxt[2] = "2 Fours = insomnia">>
<<set _nThreesTxt = []>>
<<set _nThreesTxt[4] = "4 Threes = progress">>
<<set _nThreesTxt[3] = "3 Threes = unity">>
<<set _nThreesTxt[2] = "2 Threes = calm">>
<<set _nTwosTxt = []>>
<<set _nTwosTxt[4] = "4 Twos = contention">>
<<set _nTwosTxt[3] = "3 Twos = security">>
<<set _nTwosTxt[2] = "2 Twos = accord">>
<<set _nAcesTxt = []>>
<<set _nAcesTxt[4] = "4 Aces = favorable chance">>
<<set _nAcesTxt[3] = "3 Aces = small success">>
<<set _nAcesTxt[2] = "2 Aces = trickery">>
<<set _nKingsRTxt = []>>
<<set _nKingsRTxt[4] = "4 Kings reversed = celerity">>
<<set _nKingsRTxt[3] = "3 Kings reversed = commerce">>
<<set _nKingsRTxt[2] = "2 Kings reversed = projects">>
<<set _nQueensRTxt = []>>
<<set _nQueensRTxt[4] = "4 Queens reversed = bad company">>
<<set _nQueensRTxt[3] = "3 Queens reversed = gluttony">>
<<set _nQueensRTxt[2] = "2 Queens reversed = work">>
<<set _nKnightsRTxt = []>>
<<set _nKnightsRTxt[4] = "4 Knights reversed = alliance">>
<<set _nKnightsRTxt[3] = "3 Knights reversed = a duel, or personal encounter">>
<<set _nKnightsRTxt[2] = "2 Knights reversed = susceptibility">>
<<set _nPagesRTxt = []>>
<<set _nPagesRTxt[4] = "4 Pages reversed = privation">>
<<set _nPagesRTxt[3] = "3 Pages reversed = idleness">>
<<set _nPagesRTxt[2] = "2 Pages reversed = society">>
<<set _nTensRTxt = []>>
<<set _nTensRTxt[4] = "4 Tens = event, happening">>
<<set _nTensRTxt[3] = "3 Tens = disappointment">>
<<set _nTensRTxt[2] = "2 Tens = expectation justified">>
<<set _nNinesRTxt = []>>
<<set _nNinesRTxt[4] = "4 Nines reversed = usury">>
<<set _nNinesRTxt[3] = "3 Nines reversed = imprudence">>
<<set _nNinesRTxt[2] = "2 Nines reversed = small profit">>
<<set _nEightsRTxt = []>>
<<set _nEightsRTxt[4] = "4 Eights reversed = error">>
<<set _nEightsRTxt[3] = "3 Eights reversed = a spectacle">>
<<set _nEightsRTxt[2] = "2 Eights reversed = misfortune">>
<<set _nSevensRTxt = []>>
<<set _nSevensRTxt[4] = "4 Sevens reversed = quarrellers">>
<<set _nSevensRTxt[3] = "3 Sevens reversed = joy">>
<<set _nSevensRTxt[2] = "2 Sevens reversed = women of no repute">>
<<set _nSixesRTxt = []>>
<<set _nSixesRTxt[4] = "4 Sixes reversed = care">>
<<set _nSixesRTxt[3] = "3 Sixes reversed = satisfaction">>
<<set _nSixesRTxt[2] = "2 Sixes reversed = downfall">>
<<set _nFivesRTxt = []>>
<<set _nFivesRTxt[4] = "4 Fives reversed = order">>
<<set _nFivesRTxt[3] = "3 Fives reversed = hesitation">>
<<set _nFivesRTxt[2] = "2 Fives reversed = reverse">>
<<set _nFoursRTxt = []>>
<<set _nFoursRTxt[4] = "4 Fours reversed = walks abroad">>
<<set _nFoursRTxt[3] = "3 Fours reversed = disquiet">>
<<set _nFoursRTxt[2] = "2 Fours reversed = dispute">>
<<set _nThreesRTxt = []>>
<<set _nThreesRTxt[4] = "4 Threes reversed = great success">>
<<set _nThreesRTxt[3] = "3 Threes reversed = serenity">>
<<set _nThreesRTxt[2] = "2 Threes reversed = safety">>
<<set _nTwosRTxt = []>>
<<set _nTwosRTxt[4] = "4 Twos reversed = reconciliation">>
<<set _nTwosRTxt[3] = "3 Twos reversed = apprehension">>
<<set _nTwosRTxt[2] = "2 Twos reversed = mistrust">>
<<set _nAcesRTxt = []>>
<<set _nAcesRTxt[4] = "4 Aces reversed = dishonor">>
<<set _nAcesRTxt[3] = "3 Aces reversed = debauchery">>
<<set _nAcesRTxt[2] = "2 Aces reversed = enemies">>
<<set _nking = 0>>
<<set _nqueen = 0>>
<<set _nknight = 0>>
<<set _npage = 0>>
<<set _nAce = 0>>
<<set _nII = 0>>
<<set _nIII = 0>>
<<set _nIV = 0>>
<<set _nV = 0>>
<<set _nVI = 0>>
<<set _nVII = 0>>
<<set _nVIII = 0>>
<<set _nIX = 0>>
<<set _nX = 0>>
<<set _nkingR = 0>>
<<set _nqueenR = 0>>
<<set _nknightR = 0>>
<<set _npageR = 0>>
<<set _nAceR = 0>>
<<set _nIIR = 0>>
<<set _nIIIR = 0>>
<<set _nIVR = 0>>
<<set _nVR = 0>>
<<set _nVIR = 0>>
<<set _nVIIR = 0>>
<<set _nVIIIR = 0>>
<<set _nIXR = 0>>
<<set _nXR = 0>>
/* ================================================== */@@.header;
! 10-Card Celtic Cross Spread Translation
<<include "You Must">>
<span id="topOfCCT"></span> Down to <<link "bottom">><<ScrollTo "botOfCCT">><</link>> --- Return to [[Celtic Cross Spread|5]] --- Choose [[Alternative Spread|1A]] --- [[Shuffle again.|Shuffle and Spreads]]
@@
<span id="topOfCCT"></span>
<<silently>>
<<include "init ncards">>
<<set _label = []>>
<<set _label[0] = "Present Condition">>
<<set _label[1] = "Current Obstacles">>
<<set _label[2] = "Best Outcome">>
<<set _label[3] = "Condition's Cause">>
<<set _label[4] = "Immediate Past">>
<<set _label[5] = "Immediate Future">>
<<set _label[6] = "How You Relate">>
<<set _label[7] = "Current Surroundings">>
<<set _label[8] = "Hopes or Fears">>
<<set _label[9] = "Final Result">>
<<set _versage = []>>
<<set _versage[0] = "This covers him.">>
<<set _versage[1] = "This crosses him.">>
<<set _versage[2] = "This crowns him.">>
<<set _versage[3] = "This is beneath him.">>
<<set _versage[4] = "This is behind him.">>
<<set _versage[5] = "This is before him.">>
<<set _versage[6] = "This signifies you.">>
<<set _versage[7] = "This is your 'house'.">>
<<set _versage[8] = "Your hopes or fears.">>
<<set _versage[9] = "What will come.">>
<</silently>><b>Skip to specific cards:</b>
<<nobr>>
<table>
<tr><td>
_label[0]:<<link " _versage[0]">><<ScrollTo "_label[0]">><</link>>
</td>
<td>
_label[5]:<<link " _versage[5]">><<ScrollTo "_label[5]">><</link>>
</td></tr>
<tr><td>
_label[1]:<<link " _versage[1]">><<ScrollTo "_label[1]">><</link>>
</td>
<td>
_label[6]:<<link " _versage[6]">><<ScrollTo "_label[6]">><</link>>
</td></tr>
<tr><td>
_label[2]:<<link " _versage[2]">><<ScrollTo "_label[2]">><</link>>
</td>
<td>
_label[7]:<<link " _versage[7]">><<ScrollTo "_label[7]">><</link>>
</td></tr>
<tr><td>
_label[3]:<<link " _versage[3]">><<ScrollTo "_label[3]">><</link>>
</td>
<td>
_label[8]:<<link " _versage[8]">><<ScrollTo "_label[8]">><</link>>
</td></tr>
<tr><td>
_label[4]:<<link " _versage[4]">><<ScrollTo "_label[4]">><</link>>
</td>
<td>
_label[9]:<<link " _versage[9]">><<ScrollTo "_label[9]">><</link>>
</td></tr>
</table>
<</nobr>>
----
<span id=_label[0]></span>
!!<<- "_label[0] -- '_versage[0]'">>
This card gives the influence which is affecting the person or matter of inquiry generally, the atmosphere of it in which the other currents work.
<<set _txt to $psgRandomText[1] >> \
<<include _txt >>
----
<span id=_label[1]></span>
!!<<- "_label[1] -- '_versage[1]'">>
It shows the nature of the obstacles in the matter. If it is a favorable card, the opposing forces will not be serious, or it may indicate that something good in itself will not be productive of good in the particular connection.
<<set _txt to $psgRandomText[5] >> \
<<include _txt >>
----
<span id=_label[2]></span>
!!<<- "_label[2] -- '_versage[2]'">>
It represents
//a//: the Querent's aim or ideal in the matter;
//b//: the best that can be achieved under the circumstances, but that which has not yet been made actual.
<<set _txt to $psgRandomText[6] >> \
<<include _txt >>
----
<span id=_label[3]></span>
!!<<- "_label[3] -- '_versage[3]'">>
It shows the foundation or basis of the matter, that which has already passed into actuality and which the Significator has made his own.
<<set _txt to $psgRandomText[0] >> \
<<include _txt >>
----
<span id=_label[4]></span>
!!<<- "_label[4] -- '_versage[4]'">>
It gives the influence that is just passed, or is now passing away.
<<set _txt to $psgRandomText[3] >> \
<<include _txt >>
----
<span id=_label[5]></span>
!!<<- "_label[5] -- '_versage[5]'">>
It shows the influence that is coming into action and will operate in the near future.
<<set _txt to $psgRandomText[4] >> \
<<include _txt >>
----
<span id=_label[6]></span>
!!<<- "_label[6] -- '_versage[6]'">>
It shows its position or attitude in the circumstances.
<<set _txt to $psgRandomText[7] >> \
<<include _txt >>
----
<span id=_label[7]></span>
!!<<- "_label[7] -- '_versage[7]'">>
It shows the environment and the tendencies at work therein which have an effect on the matter—-for instance, position in life, the influence of immediate friends, and so forth.
<<set _txt to $psgRandomText[8] >> \
<<include _txt >>
----
<span id=_label[8]></span>
!!<<- "_label[8] -- '_versage[8]'">>
<<set _txt to $psgRandomText[9] >> \
<<include _txt >>
----
<span id=_label[9]></span>
!!<<- "_label[9] -- '_versage[9]'">>
This shows what will come, the final result, the culmination which is brought about by the influences shown by the other cards that have been turned up in the divination.
<<set _txt to $psgRandomText[2] >> \
<<include _txt >>
<span id="botOfCCT"></span> <<include "Any Recurrences">>
@@.footer;
Up to <<link "top of translation.">><<ScrollTo "topOfCCT">><</link>> --- Return to [[Celtic Cross Spread|5]] --- Choose [[Alternative Spread|1A]] --- [[Shuffle again.|Shuffle and Spreads]]
@@<<nobr>>
<<set _nRecur = 0>>
<<if _nking > 1>> <<set _nRecur ++>> <</if>>
<<if _nqueen > 1>> <<set _nRecur ++>> <</if>>
<<if _nknight > 1>> <<set _nRecur ++>> <</if>>
<<if _npage > 1>> <<set _nRecur ++>> <</if>>
<<if _nAce > 1>> <<set _nRecur ++>> <</if>>
<<if _nII > 1>> <<set _nRecur ++>> <</if>>
<<if _nIII > 1>> <<set _nRecur ++>> <</if>>
<<if _nIV > 1>> <<set _nRecur ++>> <</if>>
<<if _nV > 1>> <<set _nRecur ++>> <</if>>
<<if _nVI > 1>> <<set _nRecur ++>> <</if>>
<<if _nVII > 1>> <<set _nRecur ++>> <</if>>
<<if _nVIII > 1>> <<set _nRecur ++>> <</if>>
<<if _nIX > 1>> <<set _nRecur ++>> <</if>>
<<if _nX > 1>> <<set _nRecur ++>> <</if>>
<<if _nkingR > 1>> <<set _nRecur++>> <</if>>
<<if _nqueenR > 1>> <<set _nRecur++>> <</if>>
<<if _nknightR > 1>> <<set _nRecur++>> <</if>>
<<if _npageR > 1>> <<set _nRecur++>> <</if>>
<<if _nAceR > 1>> <<set _nRecur++>> <</if>>
<<if _nIIR > 1>> <<set _nRecur++>> <</if>>
<<if _nIIIR > 1>> <<set _nRecur++>> <</if>>
<<if _nIVR > 1>> <<set _nRecur++>> <</if>>
<<if _nVR > 1>> <<set _nRecur++>> <</if>>
<<if _nVIR > 1>> <<set _nRecur++>> <</if>>
<<if _nVIIR > 1>> <<set _nRecur++>> <</if>>
<<if _nVIIIR > 1>> <<set _nRecur++>> <</if>>
<<if _nIXR > 1>> <<set _nRecur++>> <</if>>
<<if _nXR > 1>> <<set _nRecur++>> <</if>>
<</nobr>>
----
<<if _nRecur <= 0>>
!!!No Card values recur.
<<else>>
!!!Some Card values recur:<</if>>
<<nobr>>
<<if _nking > 1>> _nKingsTxt[_nking]. <</if>>
<<if _nqueen > 1>> _nQueensTxt[_nqueen]. <</if>>
<<if _nknight > 1>> _nKnightsTxt[_nknight]. <</if>>
<<if _npage > 1>> _nPagesTxt[_npage]. <</if>>
<<if _nAce > 1>> _nAcesTxt[_nAce]. <</if>>
<<if _nII > 1>> _nTwosTxt[_nII]. <</if>>
<<if _nIII > 1>> _nThreesTxt[_nIII]. <</if>>
<<if _nIV > 1>> _nFoursTxt[_nIV]. <</if>>
<<if _nV > 1>> _nFivesTxt[_nV]. <</if>>
<<if _nVI > 1>> _nSixesTxt[_nVI]. <</if>>
<<if _nVII > 1>> _nSevensTxt[_nVII]. <</if>>
<<if _nVIII > 1>> _nEightsTxt[_nVIII]. <</if>>
<<if _nIX > 1>> _nNinesTxt[_nIX]. <</if>>
<<if _nX > 1>> _nTensTxt[_nX]. <</if>>
<<if _nkingR > 1>> _nKingsRTxt[_nkingR]. <</if>>
<<if _nqueenR > 1>> _nQueensRTxt[_nqueenR]. <</if>>
<<if _nknightR > 1>> _nKnightsRTxt[_nknightR]. <</if>>
<<if _npageR > 1>> _nPagesRTxt[_npageR]. <</if>>
<<if _nAceR > 1>> _nAcesRTxt[_nAceR]. <</if>>
<<if _nIIR > 1>> _nTwosRTxt[_nIIR]. <</if>>
<<if _nIIIR > 1>> _nThreesRTxt[_nIIIR]. <</if>>
<<if _nIVR > 1>> _nFoursRTxt[_nIVR]. <</if>>
<<if _nVR > 1>> _nFivesRTxt[_nVR]. <</if>>
<<if _nVIR > 1>> _nSixesRTxt[_nVIR]. <</if>>
<<if _nVIIR > 1>> _nSevensRTxt[_nVIIR]. <</if>>
<<if _nVIIIR > 1>> _nEightsRTxt[_nVIIIR]. <</if>>
<<if _nIXR > 1>> _nNinesRTxt[_nIXR]. <</if>>
<<if _nXR > 1>> _nTensRTxt[_nXR]. <</if>>
<</nobr>>@@.header;
!!Bug Report Instructions
@@
Please copy and paste the contents of the "Bug report" field below into an email message or forum post intended for the author.
Please be sure to add your own description of the problem(s) which you encountered.
The "Problem" text will be visible if posted to a forum.
The "Details" text will be hidden by default, so as to avoid inflicting pages of gibberish on everyone.
Note: [Select] might not work on tablets or smartphones.
Also, please include (copy and paste) the following information:<br/>
''Story Name:'' <<= $('tw-storydata').attr('name')>>
''Story IFID:'' <<= $('tw-storydata').attr('ifid')>>
''Story Format:'' <<= $('tw-storydata').attr('format') + " v" + $('tw-storydata').attr('format-version')>>
''Compiler:'' <<= $('tw-storydata').attr('creator') + " v" + $('tw-storydata').attr('creator-version')>>
''Browser:'' <<= navigator.userAgent>>
----
/*****************************************************************/@@.header;
!!Navigation Help
@@
Blue navigation links are provided in the User Interface bar on the left to get you started among the pages of this Interactive Fiction. In addition there are many navigation links on the individual story pages. Cyan indicates a page that you haven't visited. A dimmer blue indicates pages that you've seen.
The "Readability" adjustments in the UI Bar for font size, line spacing and serifs might or might not help to make the text more readable. Selecting Sans Serif does not always work.
If you encounter any problems in how the story progresses, please select the "Report A Problem" button and send the results to the story's author.
The User Interface bar on the left also provides a button so you can make a save-set of the current state of the story. Another enables you to restart the story from scratch.
/*****************************************************************/<<click '<i class="fa"> </i>Navigation Help' >>
<<script>>
var dialog = Dialog.setup("Navigation Help", "my-dialog-class");
new Wikifier(dialog, Story.get("Navigation Help").processText());
Dialog.open();
<</script>>
<</click>>
<<link '<i class="fa"> </i>Report a Problem'>> <<bugreport "Bug Report Instructions">><</link>>
/*****************************************************************/
/*:: StoryShare
no social-media links
*/
/*****************************************************************//* initialize card faces to be shown */
<<set $card to []>>
<<for _i to 0; _i <10; _i++>>
<<set $card[_i] to "noPic" + _i>>
<</for>>
/* initialize arrays of available card faces */
<<set $psgRandom to []>>
<<include "set_cardPic">>
<<include "set_cardPsg">>
<<include "set_cardName">>----
[[Table of Contents]]
[[Introduction]]
----
Readability
<<link "Shrink">> <<set fontSize(-4)>> <</link>> Font size <<link "Expand">> <<set fontSize(4)>><</link>>
<<link "Shrink">> <<set lineHeight(-4)>> <</link>> Line spacing <<link "Expand">> <<set lineHeight(4)>> <</link>>
<<link "Sans">> <<set fontSans()>> <</link>> Serif <<link "Avec">> <<set fontSerif()>><</link>>@@.header;
!! Tarot Trumps: The 22 Cards of the Major Arcana
Drawn by <<include "auth">> (2020)
Previous: [[Advice]]
@@
<<include "MACards">>
@@.footer;
Previous: [[Advice]]
@@.
<<nobr>>
<<for _i = 0; _i <= 21; _i = _i + 1>>
<<linkCard _i showCardInfo>>
<</for>>
<</nobr>>@@.header;
!! The 22 Cards of the Major Arcana
Drawn by <<include "auth">> (2020)
Previous: [[Illustrations]], Next: [[The Suit of Wands]]
@@
<<include "MACards">>
@@.footer;
Previous: [[Illustrations]], Next: [[The Suit of Wands]]
@@@@.header;
!! The 14 Cards of the Suit of Wands
Drawn by <<include "auth">> (2020)
Previous: [[Illustrations]], Next: [[The Suit of Cups]]
@@
.
<<nobr>>
<<set _first = 22>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i showCardInfo>>
<</for>>
<</nobr>>
@@.footer;
Previous: [[Illustrations]], Next: [[The Suit of Cups]]
@@@@.header;
!! The 14 Cards of the Suit of Cups
Drawn by <<include "auth">> (2020)
Previous: [[Illustrations]], Next: [[The Suit of Swords]]
@@
.
<<nobr>>
<<set _first = 22 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i showCardInfo>>
<</for>>
<</nobr>>
@@.footer;
Previous: [[Illustrations]], Next: [[The Suit of Swords]]
@@@@.header;
!! The 14 Cards of the Suit of Swords
Drawn by <<include "auth">> (2020)
Previous: [[Illustrations]], Next: [[The Suit of Pentacles]]
@@
.
<<nobr>>
<<set _first = 22 + 14 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i showCardInfo>>
<</for>>
<</nobr>>
@@.footer;
Previous: [[Illustrations]], Next: [[The Suit of Pentacles]]
@@@@.header;
!! The 14 Cards of the Suit of Pentacles
Drawn by <<include "auth">> (2020)
Previous: [[Illustrations]], Next: [[Acknowledgments]]
@@
.
<<nobr>>
<<set _first = 22 + 14 + 14 + 14>>
<<set _last = _first + 13 >>
<<for _i = _last; _i >= _first; _i-->>
<<linkCard _i showCardInfo>>
<</for>>
<</nobr>>
@@.footer;
Previous: [[Illustrations]], Next: [[Acknowledgments]]
@@:image/webp;base64,UklGRuoiAABXRUJQVlA4IN4iAAAQcQCdASpYAl0APlEkjUUjoiESTT70OAUEtKIGhh0o7kA41QPCeZl58QP1H5Ledf4/8w/Z/7L+yv90/6P+n+9D7fx39Wv+36C/yv7Z/hf8J+zP99/aH8Cfwf/M8C/kL/jflp8Av5F/P/7v+Sn9+/cX3S9jbr/+j/ZX2BfXr57/jP7X/kf+D/dfg+96/4f+X9S/r//s/zB/yX2A/y/+ef4L+4ftD+//11/ufCn/Df672Bf59/Vf+B/lvyb+n/+1/7n+m/Jn3hfSn/O/zv5K/Yd/Mv61/q/7p+8n+L////o+77//+8/0ff3ONxEmMHghCk2+HEnfiVR15vxap116m1i5kdjUF8SRFXzWpIbLYRvcnuKhOBTt37Qf5om7rG2wxQLgxPt4A2PjY+1+gKUnM0sSaxIVvnAVLNlXP+G844FHV9vwqqA8HHK9lQgAv6fclZ4dGYI2bs8Fm3aOQERHgzISfujw4Hur8/io1qPaPkRrdiUlmK4v8MUV1dPDJyZigI9q1oEcQ3xrZWe9emaIrAMqh3y6/lll2YP/uWBLUfON9EawKZ58PjAKREW042XDwsYQgkJLzlK6v2GMswRd84Jwjt0rEVH8+Ks1eaMelbuRc+OpxZxxPUHLuIXd1Aeix2aJsnedfbGaXJz2mjvC0MowGK3flHMmbWro9WzMFQJJ8TFLqGha/ApacaNy2PCF4KCf17+hF/ifKYOwXa/dp5b2Sg6UTl6YtI5xnfF2na7QVeotUspXs11IQNMxQ2vRNS8nql8LsOnU/OUkJJJJrh2h6M8hKR/zJ4klND1Y/XgUeVlqz+Mj5P3DoHKQXT2UEbWCB5gNe54q/2yCbMP8UbvGcexnS3BONo3sbkGk+9ntumtrRwR31cdkahX7MlhESlXu9pOrQoVydSr1APpfuNvYHnHpuGFwS4C0V7EfH/0NGvkHFXL/WKDaiyrtI9TSib01zZ0Y5kbjWSNrxaoA5gmE+R2D39J+X6h9GNvON21Fm3mp2bSj2o40L8oOFg0VRNiqbxwhZAkfwAs61vkh3OnCrfx9p4GRFh/vIFjeeU6dbD14JR5FLQsKp0d8MaFInwHleKXOVglXYzu4W1BnELGZN+b8RuQN97jKOL/uq7y2HunA6qs36ARgbjm4XZ3ac2dwMEflEmQZI7ohI9XUm4Sd6/BJXiIh3rDcRkZ1dQas/AGKLRxeJ6QL8uA0VjLueZWAAP7/25Dx/MrFTzw0EW9ciMNto5f4eRBWg/VO94Sc593c3N2crL7/njD8uYPDK2NdfA7OE+xpT8M6YTW3o5CsEVGA1SPaJETAXAG42P7DIiVqklB0L2dL2ac6Jdy13dbMnHL35l8R4/6aMiDKPuIFryUOPnv7BhHXyr1u2G7r3CD8cMl48Jc1ZcZuB4WKyeYtHj0jyK5OvJDecF5uf/n1LlLr37I6Ix3+FjaPatCAN11nbXn8n5s1Xwd8FESn3qVkrNICah+o36b3t/9WcdbOo1Y5Zqi2D0IcebbgK1BvhvmR3r3ZG1CTpdP1lcvjQVmFHdr9CSA3eA3FqKPmtxyFbKmKvCha4WxAkWxP/+LLp8O4V1FRpMlY1zFmj5klNP86Db2D/yfVYMIINDAyxtS4ER3kU4pz2Z6v4geBcfMAMbRbGbEeRstHz3EQqvR4+59WK15xlehiILM2764ZeJVuf/3ZA6DDFlzbpF4WyNOuVQ4CaNit2oe0qxadRGyg6/cfVszlN/zY4PXpCKQ+PM0UUo8mWBBM0Di6V5Yg9A3icXEr5OLO7KFnhz/p3TNc3/0F3LEehKqb5BqB/rO1TWjTtTpleN5x0eQax7Dsp1x9Kdfy+g/99muHP+1ORu1Ezv/udHH34n6reywYMlmBBvtXROaqEtmwJ+3QPqLVO6QNYMJVpn/t8ayglx24tEAOn983DKVmDidi+I/+th8e4h1V5C6vKLHta/2eg50Wc90eXQBfNeARd9sec251kKQi43j9727xj72YFkJ3bFOtlZGVSQO35Z0gX8XkBx9pKfyokIEFLlpbEktn2qJ46hD3s3LtOnbU/UCTJeJJVbh8EX64iYxAop3xuhyZibRRih1HiRCCqu+nurUcY9rW3oPDEey5JdrDk+lu+/9HVTYFjzDrcTt0++Non8SCuh0Gr/fHWx4mNjUq93WUx/8Jq3jTm23rl6+a8HPR7ow43PgD6A0+4I6s6LmRHqQgiWcMDJNwSPBh+TXAi3gzLgjt0cCS7m5/eEWADY3ko+d5aTvF7JoizTQNRuC3s0Nh/Iz/U230GvmW4cHBHQHE1PEAQJCPiDuQa7iMzkrCP9RVn0iRfw2ZWNr+Ottsc7Tys5YNqk/jJIFD3845oOCq03vw+AUjEFz/x8cgaKeaioBUzoyJBv2mcDMBh/299Och19GtH0gd9yK+Ljvq+MFoolQIA4HwzUeWnxyQlW1G2xjVy4Iq32qpUKHBs/QuwaL7voDL1ViEE6adckBEMakYMKhVH2a0W+gLVaqG+yyaxROCUJn6MJKK6UiBRz4G3E5L0R1qmyAGQbOKSyk+rzW4keFd7ZuLi0iGHZTgKI6jZAMo1ZWmgzu/2wUU6jSgYyv+DQI5U/LOzH4TMJIGBvwF56Ga3k8hPQcHI6VCtBRiT+10qfdO0DG8hLGpMn659lTFX1SasTLAqEL93BaxM2cJkEQcnYQAAtFqbDpKy43cn+BPyBU1I0cAiDqKFDmTn3vXBmLeh+WXKJz/J0MYCTqE0HF/fLZkF0B3hTXZ3r8ptggT4HdYKc0E4ci28pMTpzI5w7AL/o8l7UeREZaYTdxmRfDN0JPUnd/+4vOZ+RrBTFPidiajMRBHxmbrYiEqTkQfU/mVoZg2RZN0xEUfWvnoCwH9iKJ/HQjhJ/63PdgDVc++QNEt7dvrdvoBY3RNFNte6wW6n68pKcdV+75isSS9PoTWN9EwltN2SdK1z0I7TtC9/+DWGvXraTHLXTeZIQI0TI2tZ0nBmZgAjQiGZbnuGru/EQWPxS17H05twR6a/jyg93eb91I9UFDDzku2Dr7qh9NBxkCQp2mSFOjAXv080jFGzWULWzhYxxeTmUtV2DPS6/3SfHzXphRVXk+zuox2aRqRIthBfU6VEFCF6i/g9SnWGhvlfxmbausRm7zuNIv0AuTeJBasJx9T0TLuDnYPAAyPZU2SLum1MXnvWy0WkPRfKa1omZnRm/Y0DXyk9/M2OwWXXOR80NZ6FHIKEuIPaX2AFyUPtTkQcw78vnHw5NfuzC1Mi0v28Kbem25FTYbRLlB/95CRVigP+MXf95l4sCMoymdmJGueq9LpSmqrVztLlSHqe/Lj+9+/hHg5Gjx0c8mAm82kw0tcGNdcQ9FCV2WKLBWQbCJ0ka/l2psk6G2UAg2+vvrJcjZWGlZiXsKigvW+ZtzB+DBLERHtQsTfcoDXcZ2BFwHZfxUhH5wtkabmp4P6FTTJlwSdlNBS5TfbNsJxyWVVHC/N2u7bcnte6HxVuiXb6pHjhWZCxjq8sJaYJEjffpopcBLvLxWYckfxeMMe9UuAUGDkO8OirCVBtRu5fPsDTUm7ZqFbM53/aS++q5ZjCkVPgkExxVlTVCiZgcGbMmkOuoj3iyVHr5JmeoLkTU5TP7nxZGcQj4q8rM/iA6wdya0shgq+Wyoe9bENaeaPxR6jOEp233E/FSXx0n6fjeA1cRDEAV8E4wMqCp8fOui0sFczPP4Y6ffa5Nm6/MR0cVLwhDrO8W3WmuFbfSQL5DxLAFBznW7/vM4j7yrNZCIqvNCjcGawb4wT2O8cihKUW/kn0q0NlHBEqyPRVCAfB0WOJEeIFBLyM60B/JqSTqUm4g+h+nZIq9i37vlb/P0NpUXW8f1PVob9/3PZVOtt6AK6sbEhj9H+PLZZ2udK8o1dV/i834NTmcbLo09/ulopX5sCnAPvPwsHpRKC64LmUkVXqZ6+7QjL4OwmPVjLJyHAAlOYdmSjl07OUQUMk5xGDhh/9TEIbTqBy4qeQ8EPvfc+FrPgPpGh9edljkkmH8O084wJGXTYI+AzC075xcHKTWW1Q9zDrL1m81Ii+pme2kXTvMyP2BStQ0g7fXUI0UPGd6jmXZGWdJl1E9vPqSfr8MXaS5qcFXtrY87mShghdbcX+//dFVmvmNrFd8z1fi9AgVI2x99P41++HUP600sKb8G7BSLSYH26xZQCk5Ezo++DTfwcThHE0NJOMSzH2FZdWNu2MPXZyXbDvLSxm8G6QBs0XwJEkBbgR4QkvSZNjLGmqJfhVlidmoI4dA72gllF04qNml4xHT0H0ekBuOTgELS/z7D7o/zfkb/1gk+YKyUaoxHInKpNBvSZeHhtJVpy1Wo7mynP5uNsnRS0DnbC1y7weoLlYsyKJv64vi19+eXwkmjVKrd6P862FpcnTfigJgSUiMKb1c6Ek0ZZYA+8ubX1XJnGkOyQHK5pKUopU+xy8vewuE2zxB9yJlsQH33CP0Pfhn0hgYPqLI0IoQcDOSX/AfccMxVZ4xUC/V/2qMDaWk5wG/5nRvxi5kEHB/Nfhz/euX4EQmyQ0WMTe9jRJok4dQPORRmE/9HzkVfXLXVJaOhPGNBFljgtA0VwPtCdJrwUAQGVVhBDZsT290Hq8xd3EvhiWgLP2oSSDkvQUbD+C3vN4AQi+YohomArpk5sTc8VRuOkejfPw/f24xpOUxr1SVYJ/NJQ93t3wjtdxTDzHLoKtuRNdlfw9c8/X8h/8QX+x0akQsQ8kyagGK3pVxmBJ0BhbOVIUrMcim1TYV5oyB4qmGrTEdQxpwFyg29Wls17KqOdXUcTSE3Lg9xDE71Lvm2BUOlTHX7PwX1czyt8KjuX1nfGsvTDWv9ZhtNn9wwRNqr0bftjBicBJB8E2Jqpo5fuj1gQg/U1+57AQ9BBDq6W1xBOtCQD4E4S71Isfalt0SajHomHY4/xZYvrjCM4gA3mN4T5gSdqGSvKi7I/B+hCgidubPvc7Y+gqVB1s2aV9qutNFCSxBETAyCUPBvD+5G5U4NtjqIJElZjwn566JeCr37ToVDjBHC/vHGSMVrgbbK6EJWJJhKsLPFHsQwdpBQcRDxP9/+WQ1aicA/jGkugqHT7/sK+XvN5GD3uSKBrfLHj4aRtCzRChbN2ppEepDRLCMqJX930wzCnODkc814ZqprsAm/88W0oAzcfE5HJaF6jLVxBXAoB4nij9wgrq7AoSQ0I95Te+kSuW4h3uSvvjkflefeMesVFmrCJ5XFZA0mi5goiKPKADepiYA5JE+rzwOIa18ZnQiAvmpLsd3I1ylQW+adZAubiz/2MMJc+xDEFSAEqZjruv+xFfqttL2rOzyiJa1r7eR/B1BPsheK76Yg6PBKetnISPqYsYtQCCAd93HUe/3fJpBdemIrVa7Cs1rZhhyOuTLO4C0SYAYixrZVCbyKnIwZeKBu4Nk77mh2B4CaTDyMG7m4oONpijpRAY4qe3WWx6/M4quiszBfVfvbmSmynxSW383peQxNUfCOl9GPu9ikaVsKRLnvvD/lAxAGc7CW8pd/xJwsfNJbzuPE2/GhsEhkWgfNWqAAY2+LgvNEemM/32yFJ+VHRPiVJrb9cHtj/COu8mHnKTSsTJ0Ij8z5+1y2jjxdVEcedmsw3PehEP2yPaFtSGVLtfA0Kbvi19XQd/g8OBhq/wpl573sUG4otxWb2FgJF/MDy3KHhSqFLpNz96h+5IlEcDKjtBliK+9PT3YGawLFxQ4jxkDoEPnB6pqseIwmRi6pNI1EN81aoJ/Mq0AgaW3+a2k+/W8JBxdn7+pbv5yXPe0Pl5IHhIBjmflUByjpkZjjViih6Jrp0pTwgN3A54i2hi7pS59IBpbstSYT0S7T3QcIV4EzrYQNF2xKXBrmVvcutuPMjw6OFX9c92+JuknITVAZxMO7Q3iA/Fv6LUJbF8JwUuxUKWXR1Csl/gTpFUbpX9uOP9Yuh1MKj+l7oJX9aELEFdn975KVPABCseL208x0qsze8qqNaDLUZycObzqsnSkvR9R6cqaSlUBJbb6iOPrnap6X9kFdaE2SsysUv13dWLZdoT+B95V4Wq8uMVBVl7ThXOzAe4+jNMeaBNIdumugPbx0WIAR+GJ8XlOGldBjn7YLSLTuDo9mAFJUE44dkL2IAtXlzOtdcqpIshZY4niP847v141ltEhEB6DiXnXPZt+2m6CeBUL3tUp0k9iJxmTI2xGVH4+uo5xdxfNu3Ha5gj1no4BAfqK11YZ7iIOKEGY8142YdjQT6aEN212qM7QN5LaCN6jEqZAuYBuTrR9hIS0u9VCrITV9hnimOGz/+iNmt2/iWcD3D+TmRZqrhoi+ekxPMq4zs/vuPU4O8jysV8LcwpoKCg+JIReC0jotXRsOVw15CpxqddeFIxNDuvsdwQeNW6XOOxiGEULGgSnizxe7nLnNTMiqToMFwlMPBdqbS8be8xPfKckVrlYbQMmpfGdK6pHFtZzZebS93JInLWrT5M/QAHAhtpbPFE8duOlBvfobwE/h65N/0EgXZIudDuz0wppJwJsRBqRDPo1V2eepsgU2fZEuPfb8ozOgiBUlBdr7ELC5bUv9y18pk3z1AaD+ub7hWgpKYQERZ5Pya78ijWyCBcN7IWj4MGBYsO/6xtWQz+jzqPPimkKzRP2nHs9HhZbmnqjIH50Hir4k1X+fjpvJYqgNvNVusFhd92fKTcZ2AFepwOSHY2vrfn7/+i/Y74umpDVsWs2btH5p0SCypWcm9Dcda2WGz7p+89SO1yZsUFg1IE0hAWLAIyC8QkbUq+m5WKQk45qv7mSbiyisIEWzJoryfGadahGz3ts7j4Ze5dODn2W3DINKX/lD+ACUSu+x4E3zmxa0oPuimqP4pn/hHHsWkNftheJkkyQSAITCYmCWeopuCo261u3BZRY2x3L/cw3JACb149+nx4u/fsGXiggNpBJ/uMRp3Zz0a6Xi7peixOTtbBdG34BIPPCbLbWfvcWA/ObYCPXkP6amHu5L7ldgc6O70jZ3TmvLNRZNvRPQGSCtLglyWWcM98F2D+Ee3SLAyUGJKHVHhQFpQfWqVrnCQJPF6odbntduejnaDD416A+nxSXcpjrxEunbr/OYDNUjNXC2P/0i59XKE5Ja6Vroix1+1rRFrhHrV/vS1OSdpqtG+GZ2hQ9uWKHXNUPaC0XV3AAj6r89gtO89YRycWyuEzX2lEOLmrs+usov6CDpWUD9Vun5ttspyrQEPDyhmz5HC16z3eUStaLv1bklKp0jdzRTuCkxiTPGQCUxnfyEbOXZgdtMmw7KxMw3vY47MWAHCa95jA6XAT7nwNbP64m6f1fLx+8YrAe6XEKPBaPV8e/AcVoIClDAFmEtjyB59sSpeSyhOGiQHS02Z1G+g8kLFYt7OGBtSVol9IZaqBsdMH68/w7ftFForAXM59Hd7y0ILspmJSDv2sNaF4V+j1eVGEpI9LmIgqOBQ40AjiqDLqci0c2EdXyi0nws7Fab7t7VQl/ZWf7/Tw3j363heGgw66/oRp8EARrvuWSYxAkRRHWxqozp+ky917HVZ5ihLz8DLxx+RgnrIxHLvoZNeRzW7iMwbuRE1G1FcIT8e+7zyDOUhyrpE7KxwWH1xGyIgJrlC0vLMNuJtYc8UqaFWVsQmk1FOL5fstFJFKsBfnvt82v/SNwKLM2nPo9nbluo6vvDVcnnDriZPJ76gB+jQhGROC55fRSR7Ep2n+zy3SH4DF/lFqXMHqwtex1v2m4U5A8qFLPfqjjnk4q5u0aALd5GsX1g6rLAWFxc+Ves83KTf6FKhrLZv9ITxeHU3fb8lHBYZzijNhq5aE7sCOgU23L2fE2WYALUhNKlRZr2VzhiPUSpaNl/QueHuZOf5lqf6kQ5bE2EKD3Onr1lQlAF0hz81P0jQwcIRWSRuFGIyHdcukiaQWhaozHIrbg70tkuUZyoiY1/ICf1QFHAE2BlfpF9GOy6V/08ZBHUlId7lwLQVrg0h+tUeZTqeAPkxoEPxrlLXS1U8UHeaBx3xyRJ280MpXnFd+/v3/bcuZFpCfic/UjJm0viIaC4hXoTdm36cLgpt2Mz6tNCgSrfj09x+tVmUKnW0J28Md5LN55nJy+199ONvAq9FUaMVm2dA1Ev/A0E7YIhOdEpCCF4Bh5PTq/IyvPvwwcoxkPfitisFhk6bb42ZYqylOpP6aKc2v2YN8iVifwIvxFPJi2RGYldwvFfJb+plLJ2CTNrWOEIXYzIAMNR8sPoambT19X2iRVa3zZVEPHhNoCRI6HV37bVFx1Iu5CCIbMd3UvZjxexQAtgLqHhudfhmCNpQFpxa/JG4E5rc7zFRgNn6Wx40kCWzhmQX5Pj4GVqeKg91YNMZ7dB+qPexM4ErVEuv/ILpwgQ+wGYsEr02KJRt6xddF5ZUl+ne8sH2Nz/z+j4+LrAfNO4XvdqtVQIjNYDHDu5YsFhgdeAc4tUinV0xcPx98TFRWXXrDJniDFekUypyVvvj0bskEPegDG827WsJtDw99wZpTG0beDOGmWwiZeqrg6wnHx8MNudr26zyXMVtxw1pADtNIX8z5KNt2SA3c/NllMhSkqHQGvuTecARVoYmrrt3aa8SUiu5G0vZQwAe02oHPpWpCr6+jbsFHDzHud1m/WPnAdIiRWZE8Q4HI0sOeGSswAzFH141qg4kSugTb4xUUPhzi6q7T1FoUDa0fvb2z097UD/dMzQRt4jznV27EnJp8jzHih6CQ/k2QVZteJLy37ohOVSHCYjo6TRRVAuiJRSqnhItbnMYJTQmPBBLZkHSR2OXa8YzVq0evZBelfngcr5lqIOb3yegXsVESWppk2iezYZ9L0lg+3g3siET/1QkY904vhthZnIbI4nKwC+tQY8XIEI/X/LZxU1gdQqy+mCdGumYRrGSNaS9hQcHbk5KMF6QgD/z+PHwsHDdYmY52pSv9VZnUEEciV2TtNDgwDCnVJlrZQfEI7a720bCKg85PuWY4fosK6DyhXZvVk4PjKur+upfodVyw9f7SMgUrngVPc/9Q6cn+IviFIWUyPiJZ8jqzjuTIj6siO76fQd5yPLqAakNaa5d+t8G40aecLgn0DD+pK7+A3e+o5G5F4O71/Fn7ePj8EpwEintFNoaX0DpxsUbijfFiaMnitQQTgZxj86PQlQONPYI7JKk3QMey/gjgHO3/9m4AsFycLUplvZbwxkzsmizVSFZghqxikwnh+sI2dAyDNm7fozgPRSsArgFaBrwINElFsKWLq0edCqfiq2ceTZVMl/0+pfJ5L41vrHntVEQrrySuO6M3dlqz0rxLd+ZFfyY3uouQlm7VuTMl1rqRJnrvsYxlNChPn0OD1Y17iOADqkT0zRcNCA0ALqP36l6wpUL46yt2HgMAfE5XClcV37cGkovJyAwDkAhE6PcZ3MzEC1ytsGnf7xtFihjIPoLjwD8d+MvgDM4SjrI+2FGcOETAYVThcs2m0UTGQERPgnGharkzf8FYzn9Rxd5khk8z8/oiwg1VNOX+bxgI7PAWmt1R9ekLfQOT36x4B3tgX2agTEstPB+KwaNJLl0UTWlVwOMBvJjvrhD0XgDU0zD5pPUub+SKjala+ATBc0rby41qvBGV4QK9sLdOc/KaPCjPtd0NDJURPaHSyJblfAhhqVBZHMvBCV/X+d2ZrQw2v4OjYa2Ykc0jF+hu20b0doeDglUPLTzuT7KxKn4ZDxLpmDgYGtzmfHUEOKSJTRplzIApdkNn0gXu9WH233zn+VvgAY3r2lzflVSegtM5IpnXO8IzPNThuUzfasp8UP557U8nInGv4qCKsmp1xISTI7aFd9LMx7OiUS8slN/Z6qwC0lYFGEyqoq/fLqtG/BUuviORVIRrOisYST8AXCHot4M16Os3TIHwTVJmLp2i90L5CU7uJfP8b1KX2KdPB1P9q0uEHVqES0wa71HFsiJHmCibF7+4p442n7XUDBrixBpTWMW90+C5W4JjQEK6toGCxMp9p80ExKDUyBstbE7+27pWcww0paEWnK491vyDti2Nlu4iQQA/QhOkExaP/KbGPBH+uQ8IqbZ4RHBqlNbj1Z/TzJGOYcEmcbXKYn4E6K5wZZ2KyqpV8OCxkOkxNnY58LUIs14wm/zrvc6u8x2EzbSUEwtLWtBjpZSDcrCy0FONYmY3/QKWfO63cq4NZlguxL7GVjOlBzqNfjRJIdapiK/WlafmgLUYKGhOsVoYjKBHHepUpTUob66/72AWfcMBKo2G05l1tUvAtaza/c6QBTkeaysOhtSJiplTh9HHdT+kZ0FX6px4dplipDGj/45qjXV9HpgDyjsLoVK9RVyinPpRYCMWD3edIstmzfzbM/RomkzPN9moipZWeM8ee2pT7OtdMMWG3hLOom1HL259LQepNeIVDmT7uPXMUOFcRCW8eTQGj0h0pUlVO1a+rYKxKoF4uR5w91CwkJtBc3OPq9Cuxo+V/Svf/4YQ5ni4Gt9XPXk1TBWTQMvZoVV7aaGO6Hb1Dq/vuxkxZn7SL+3SJvAtK6sYiWaUjL1LDYQlS8WVxEjDirzKZ2/E51UbJ3XMeU72hepMQKafX0cwN3crzXPAXnga2U2JysJVtHoLqD0i9HheAlQ5lAcP0tQ71kc9NZAFy8Bee9oSP2x3kNoA+nsVNWP6Fv/gsLMYVOLEVX/ledx2FwNI+cBZPF7nu+X2ZARuJGXfh0C+sERTrAcJpsQMvNROTFy4V2kWm4ob1tyK8FUhspuU9qE1ronjvq4BxNZMv2/4LfT+C/NE4IpDko2aNmAmS17o+IISbZMa1VZFS1oFJlQLt8cxKx7j+qiWLopC3wCNzjKFw7ORcZTHJGuIBQ9NH9qmgpmxt+f97yhfmAJkGKABJxKLxC0QFV2Eb4a3ytNjX6+P6fCeH5LEbjoxdbYImEmuwynx6J3saFCGpkRyzj2hu8g4zxFYtJJ2aHbe974t3xlU3s9rkItr2g9HwGTj5kZCd5sAEBDQlJTbyyIS54j94gqQBUACRdeZ7WiiZMMG7AXsOGK6TnwxI5TN0olJW56bOtdN+GYiSCW4QCr5AzzDAKGDj0f5VMpLQ2KGyALtdazVHouswdNNPMecNXLw+pND4VyLUN2glBaxrACrcX8usH4o0aqQnLrnvHaZ7Y9ccSjqc6sFDmbZTzjmWz0h1RcPedaA5SvUCfjXtrZ/ai9u4QNDq/mSVgkvec2fHhjpP8yIPD5S9H/zBBDMUQC1ovJBWsiUCPFo3I9cODKEMvgw5NhrW8y3x8wPs06gDlVKVHNl16h2zsKag4gwAt9y47ud7BmMO/2+Xp1P89743y/C0SoiOoApV6/1zgFIsojWJMVgGbXsmpgvD8FG2w7rwar4I9YfroeA7uRkf04M9iA06tfYQnFmIEr+PVFneK0V4HSi6ITK2KW94TWPW4oPLWiuf/pVb5KqIDmkBIlJGwzALhkFJvcSKo3mPqJYVsbD33lLqkfC94bSdtbQZkzJx399aFOiBpOKcXMNCViRQ68ew6wdY4mC9Nbybg+AOQc/MM2gHila/PY27E7T4aBXb/tA6uNe03zriSA0nyouuQyFWrE83fYcAbVnaKolfzsXqHTQokUKvOTSsg2kGRQaUTXrZTs40Y2KoWKl/2+nO8jN4sYZvYw24ZeRrkcZla+oA+KZcwxcnJNk8HPoKsG4//tVQFDOAPV/wSxdautN94vwEjh1e4qsIcCS/Wx1YlLRJB0u2qDzjEimj5G3DNi2b8fr/ZhphR07shH6YLMGpn6VJxBT8e69rwUhQywiMmbMvZp6ZUyEtzoaw+b2ZAW71vZwW5ZXa8IaGY9ThLe9WWKDwOfvGHPXI05cofw36MNNPmyAtZ3GsrsgJ4m8PaxY8I1movjFw9bpAAA:image/webp;base64,UklGRmwsAABXRUJQVlA4IGAsAADwmACdASpYApoAPlEmjkUjoiERiq7IOAUEtLd3ML6P9J/WbpWUHrkHtUU3QWPmn+1elX5t+yf4n+9fsV+5frr+MfLv2H8gP8B/2f838SP9d4cekv+V6B/yP7JfcP7X+yf98/bP75/v//B8C/jD/I/mF8Av4z/K/7N+RX9Y/bL3Pf7LtTNq/0P/G/x/sC+r/zz/D/4L/Bf7//BfvJ9M3vf/J/wXqn9ef+P/hfyO+wH+SfzL/If3D9tf7h////L98f7Tw2Pwn+o/an4BP5z/Xv+L/kf8n+43x7/63+j/z//m/yfu5/Rf8L/y/8r/qv/R/oP//+Bf8t/qn+q/v3+i/7n+L////k8q37w+01+85iIkwpxX/Y93BfP3Yt8qo1iSIdSrJe9WiFZSIpki9nlU983aW+fFfP46B8FpyqPoKJpWNAGlbWlnL9BhAtZQ+jbMFU19WflKcQlV7bLfKystqpp/gwxUrJz9kiDlm1e07L1GCz1mnANLEhTGgBvWA7JsbQVnASXIBXPGqioqUbjMXQWDdyBhCnx28lxzG82Z7YxOMUOWmWQEEuNaEaKAQ2rEYitLxDREhM4D7KxKA8JpIfc8G2q/VnF2SClWoBHUMcVJ4yCfh0PUR+jGeX0pGZCB75dqW7egaoXgdhuyIZkT+UoOERYqLZ/jeBnznYrLJIfLk831pYwPESAYWIFr0SKM8q0PLih8tCoKZw9+yQvPPkaSh2i22B2Z3W62+oCJwlncHE5xfRsemmUMDJlRw/sG5OR/rjEH9oXE23PF9M2LcijzmVrbrMatxGN0HB51wdeG1N+XUrzLmNE2it1DGAA6TgpzGNuA1ydpn/cDzvNZ0REsX4aqiFVsJuni3qgOozXEehxm7gGQ0v9DTvpgExJScimEKuZhJpLZOghCSnzspTypH+Gu+5wmG4TYyCg2LiaP9vv4nF6q4o5FGZkvTmCu4RxjSrmoS3c+VK+PpMhQKWdMLEuQEe2pSL6F6L9yITlHR3ZxUwHWzTpwxKAs42zF/aMBDlSiHfgMkni5CgBBIJl+QGbZQNaVyjBGLw4SC5TrQyGshy/Z1mBHDaMfqOOZws5km4c5G7iyUDy7ZwaC12MoZd9ajJ71iUqZLxKzIzq0x3uObEuDI2HauB8iHtHPU/BAoIWUw8c1nzfGFT63/lO8QFEe/6IvScLs5yJ4sdtw6DQwe73OSqdzTKiLDMcl4ygClE+FOO1PNOZfDIvD94yy4OpRlPxbDsp8cFWKzWUhsNYHx4jLl/kSrYIj0TXt0zc4FaIjPlMsOsxsPfDVJgp6oxBT7P+Zual6qQNwfuE94Ccw26xRLYFg0dU5wc7A7TmFyEQ6u6wM3ldwf8h6R6VIge2Z/Jf1hBpq12JyCInknHr7cP4QmiGljLaYT2Ag8qC9/LOcpEplNmGWlWFxjj61pk//Bwg1GoEbBrfTxqj4rPl/+ZIA6y0OVe3fzNDyQEhjeJMpqP12tvQD7YV8vuvia34yiMqwPVIJVDQGmLzlGc/MpfIeuVi3NupFyMCFhfZyAUkXm3VJKv7mcOh5ZPdB3T4mLjFYVZ9uPkbez2EPN0zAdCA718FzXn2idvzPX1xL0Z6cpRwp4vQLoC9NjxEAqtcJl+ixxem/r5wiTBw7AAD+/LcQl5dwciyEUyl33JN11lNK7V6s7TjMAOlqMGSwIPwlIIVMTEKD9KZXaueXSpr+inv9Q56zG870x95Ys3x9ceYxa1riBMT9p58xnY7cRMHcCRHUd6YLaLNblXMszf36C/heN/6n1OITSRlIIywI3kcqMv9+C8TcyGohvKDWk2r+46T4DZaTVho/iVfJHZNtZ4axfWj7CSosAm8ynjX1n5oVRrOkvCqT+Jx8hb6SZa38kyARq/o/eWDSvZ4cdaPT+E2Bx+2YXe7XKcMfQiYruyOFPcejkioT9HsVTQmigVH9tDXuXIt+Fs/9D8YOJBK7nO3GQ6YGt01p6uhXcsabWQG4bHTiAmfNmR8pYp2qx73E8cKHSXGsPowjBXl2HOcjNf/vTPQjEXcfXzD2BwmFOGHSQyyvcXODHhQFMPWPFhRoDqCIRHQwjNONy3UAvDGQkvKpsoSKgz0yjW7rmlRg+gT+l4Lx/HPIoUvcrln2w62GKeQwiP++9B8o9N5bOXY+FlxvvT31zr2gwTKiuZ4Hm/y5V1VokvqAkEGLgsVpSoFt2XQk6YCpD+OoMXJP5xPI1c+4GzDMicHLfB7GNx8vr+4uvY+UUgZ9WepVAVUSaEMbHl4W+q99SAo8vRMhgyTYZjwWdbfdTrho63HLGiziUSvIOsFugJE2SLglYMjJf1OF1kdBdEApPLTNUNUJq80wgdF4ZsRc16+Zf5vu8GSZ3AZXMgUPFW3nw9VHw2xGZttRSdXy1lYZn1yzb/I+5ZC7rqfORtieS/4kCPvuJPS7XeoHh/k6TvNxn5WC24HnEHiRIUEUusNvsY5FpBgxU1LgZnPScuhEMoINaDlkpv+uN5GIo/aqCuNqSlWKvRiCJO5uT3VVuQiuJR0uV1TlzoszZpA8gO6L5X2dW+F3GJIuPH2cDTHBATaNYqp43NoP+3W5W1mYimyRhUDe3jUnQV5qYN1ro/eLoCj7ow+3U4hvaRO84/dtZjpreYL3mWhjh6+4tIyHBgglY+asbpnFEHPtfo1BLvXmu9tSfMTVkbiiW7ZhIJS6FuFEtXIePLtldageGQb4u0ZEYviOaMfCTy4/zNJDZ+1lfXzTATB2du0tcWJ9oioDQ3ausgB5Ret8F6Cp8x1TplZBJSC2zF+z/spKByG/YO6GTovW01SS94cP9iKndHtzBeF8Ys+HZLJXe72qavPreU9FADeqEJ1e7lpG08p8KmTBulPaFkjnjBxQmYMpWjOV07tV3iF8KD/WAIPH1+j2X9eK1oOAgnavSGh8A9DdwMbFwKJFr/juanUzzmme2EG02acik0jkI2MtRl8Zkz8bpWru5q0QaVWw2hR5Hpsj3VBWJAqwRDrfUsg97lXtWyRUr1Ik4ELQiNw2M7OdMiouq/KPrSavC5q77qv/OCd6NvwJsvbjumEf+Fi9oZkV0YZhS6BW6T3i5PfsRryxqmBCyDf9HSXx0WfsxfSGkEXeKRIWMJOEYO83ZRurGF/9Um8G0Wx203akHqllQxviAIakKeJIB1W9/Q8mWJVMfhkJ4wJeqFC94U2wJLSEm8nXPsCKqqnUDaFjcsVSMsxW7WGPzjusvbEhh+d2MmrStm0JepT5Ick5T9COJBuoCJkoPyT3fysbv43eAErBtVy4Ps2wVEMpf08bQccd2rIZmtb8fgMQtLbxPybW0Zj3uZTm/xwE/eJLWzu7Hz+ZZrMS06kEHTPTuPsFJRO1lJv6IqHOFSTJH685jA5jPZP5WAp2l/9APCOwvjtd+auhcOQmK901/X+RavEClMmv/S/uvFu+ljVw+j4+TYg2w6ynl1c1ZqwbC9hg1CXk3E2l+fqBNryFiN4wdUvacjxO5W47kF0sgcaiHIXcMCWEv/Pc+PzeowhOHBn1AK7pKdGKJjuefKSsQXyqzjELRFqcCtAGZdF4MQsPzPx9to90tIOmuhLgozVYarLscRfZqtEdoN4xFZU0ApCA57iSnlxzV6MxwTPd8O2+g8adbDD3HbESfReYM3hUTU9+1jDNsmJv+siutJHHEbYxeHa1EuGj6njtBkAKCAxsVPi6oeulN3EDRgRQmFdxZMa4aIMO45s5uWmWMVPwQgDrAhke75m0r1XPLvfRxUg0ea3JAqO++4QauI2OwIvkUq9IEILHhiEioiUEPuJtalltQYhx5bH1ufa2LVng68ImprMWZa1rY2Vr4hnxa4WzRetjtdmPtvaqFALT+SifwEBNEQxO/JO4UhvMByLGh1JmLHHaemfGq/YrnugsTXMItoR9Lne44fY6NAyUWfPMeflCT+ldDfk2TX4zqsDt9nMDNRUbo+6DcrxViOzERCtmje+Zw3vEgkXZO7E5KGRqJ4mR/EpsUQY3hDsVcHeCqxZbgaV0h0N+a1aRBERpWLjHYWo0PbLasRMb1N6MKA/wjf85NarZoSBKGHEgYHuHEQOlRf7SvQwUpsW61Qig+uWo698vEfjg2PqQGSyYF4pwjnkazUrS1xUHQZgl8eAw+4UTTPb0BAQJ8h6+tjOqj5wcscN3fcGgERycGCRzO7/5HwvAyB62vzwjB/rz5C7l7HBN4E8Zat1cKxmEHxwAM2+DcUYGuN773rE51JvckyP4jqnsUqjr0GTeOYSvAumeWxHeL9RuKOKLg7ZDH9rSM/rSYYWkGGqF08/15eCN8B9zea9YFNwpDvZHD6hQB/NEt/g9z43PZCWLqtu6CDHg8dEZ+dER5WqzfEVWWtqrjarbHVRDkWnbErwDhpEm6NCm9ffm67Qucx0uis7NPeWItfy5tL6cuxZnsGR+if+eCY2K8b13g/ADtj5DxIdzS2bg9NtWwuPCcgTSc6K9b/KuyAGSIcOW+Ba6SNHDIB6w4lrHJQyIfo38o5olRU8QGEcj/fOPsHWo/470ZqXAI0RmExNB5T2U6IxoTJZo8ZaIT3l5e1RUObKVnp0EqcLP7K3jKQ0iN5jMac2q/M4lkfM7r18PHYDYpcTYFAAOPhoMRaeIcAEmgBz937/+Q1jzrCUUNIiawtPjYHu8iztHgQR3MiJvW6Mfrx1Pniy78ZaHizcEaNVHzxgp6tKUEtcv75EjAKMMyRPqWewKsCTRUULrZokWRyYqGII4GMfRe44RoQ9A41QmWrGhfTiHSjK3jh8ZJ1TQtPH1qcgussM6vcsESoj8IgxU9HBXfXgeENj9sDkag/oxXlXiOZDRL6sSOi0q1DqU2eQ7PTLWpwvOJbBAlTA6QNyNsXC7VdIx/hqyzHGlginuPvNF1p6VIfpy88k4Qelxb+dQvJJnGvyUbHWM78WUAYfmBDVoGscrrt3VoNXhO7CT7KRzISpKJ63xPz7KQdAXIUFkoGlmvfWLf6ewBqYw65xEMj2MqmYSskMt4DQYUW2iAPA8egg5bEKSt/Lj0TVVYYWDqE+UF7Zc3wDPE3Kd25iH14juyHVKf/abwgr2EXJGZuc1vxYaxmrO3QH9u+Qt3GbQKu6YFlDVNdEDpNqdy2QZlNx6HXePaM9dC9gAfiqIUa0tjYt5YrFhaF5dJGc4/E/6C7VYe2q8svK0v5xp0xaHbk1F7YM7/NmRa8rH4n+EdOiY+s1yiCgiPtBS3BS55RuF8pWcpFs4Y8WRkOJt7cFxZ3B2E+7kt6yGk9a3cMmjF9Eu3vWYNLsVrwgbZ/4kHmBiYrOXJJTni1OguP0eXapaFydlwRLyG/wRs7JFbmXSaTnbGI7LXKP8HmCONtDS9K4rmYF+HGnpjHwSYKfdFSM27H0jE8iJEuipSa1uXk88XGkG/emS88I+Ui4o3FaUL67mZGsCrsRAiiFAGys1RCZ8G9v1yM8TdeR154HEZQrziCXSAwmU6RN+ZGYNer/6uWo8G5z7shGRySknNe/KBzu8PGYnJkNlo9bkfvfkVjvMcRQCBSOl1qsGXFP0dHaIbT/1I2CsSYWxqQpByL1XF0KDOQuN/CX8Ypp0jcPdt24wLp6q9n+SQmEZDATEQrnO3rsGlFSHTL/345TK2oeeRHsEoa5wPPs6p4kfRTZmpu+77/rzjkjIO80/y1ZZnBcTZuR+UCSixWp8jqPW2OLpgNqS0va81ey+eHav1QvdG/93m+2jmpI4s+L3iocaCFiUEcv+YnVB65zN8rP9ttyBDCQs/xWfyx4HczHSdFs69AZQVaOU6XeQY9WFuSY7gxVnr+YYq9C60IHIOo8reF6EeL1eJnizQQV94qfgfpXSswrzucxwzReP9SrKtMUc27f2KkfeKIosotIBt8nmFa8KkHG3C1zaxifdlsOd9xydz+Wdvp7NQ4yZm0wbGvWYwrEba4I5kCI6dJjFq78tHKb5LUzRCUKGt+pWbEEQGN0AIdCSTIxvN86qCT9YArlHjNLzveW9J7AYEm1jXa9HEimp/NUoEmt6FcwbqbJh8c7NhccKCPw/PHGi/6WmW8DauJpfO2vHt5DzGm6e7KgKNNQVDHV7+EwLj0Q5lOK8L2b3HACbOECZ+XOO5gaDUIWJ8yxFQDRzCPYeo9vEz8svz7ImmLE6Vt2Ss6M4XGXL9SzajgVKFLVN7mpDb9H+W+hYH1kyqosV8mu4WjS2kZoLNe6EUxAhrXtWpQJJEMjYMjxLHnwFfeaZPo/ehYRmd6y3OWZE9ms1vHAiBnXouQXmojc3adYAVx8A6MaZ7/HvjLHamWs9Dw9QD3hfTYP3Qb/wyBe5a7omIEMac0gbOM0KyRUI4i8jcrVa55lWjiw36MHeSqLps8apA/SR64pakSQG0xtj8Fxv+NklSI4MSz6fDOqX8f87l1BA+fooDZI0f007Daq+KBC66jnnVQgTBBflwGzd+xPFQPHoB5VOXoKa8+8C2o9y4CW5O1ZYJ3IoidV0Qf9YDNrah8H7G0Kx4LSJ0v9IvVdd0etQicnIV1xURSWTs6ZZRlRapJFUKFiHrqNG+xYXSm6Jga0RvMcvTRT/aczKGqQMXi+M52f7em338BY11EsHb9ta3S3hU8atL/r1WyAhbJggS+eqAQ+Z1vMZSM6s2iaHcpMkihu7oIZCTZ+6GGhRTh33W2mnj59XEwc5WRodYhy2jcq1qf4UydrS/8bUkGTGy6qFKxsKg4SXv+NGDRLywKDK4U6UmraLQLOhA5NRGYGzdFO3Bwx+QDP/Oq/LZGJY1GfeQ030zy7p0KeLW0peQA3rsuyx69nFX1kl23WY2aZ7vm++LDC3rU8CFf307YCrD8bwyVz1C6B9JrBa+IGO037yyrQHwCnPa0L4h60CXNmhjIYPfY4u5xxesO9ifwTuhY5+Ym9oyf254nLfsdqTECfk28827VegBNpplqp2D9MZidN/bONQ10M4dPmw4ep7/pn95fYwX9O1sZGbO5r0crcFVBOOW0gQhsvo+tX6hVaTUpwO08DWFmvFPwVN/gx6Uhcb3aLiVUghH6xL5kAv1mAv4Fs7eza28uTOjDT8HeWVmGhZpn8YtofLr4m683vdIzHhcIyyl8TkxETsN+DA2+B8wp4dGhJh2wyYWlJ8Vtl3MUY5s40MbKqpBucoOx4o2Jq3Vq6sNQHkINciQeF/CVOXMG3PY2LSwNEjfMg+vS7Zz5N/F/DGvso5R568FmK5vT+pB9GIUIGPTL+bthbu8lxQ/DRVJTvw6oEdCI/ZvfxAUPRgFDUN3Vi2Hr0vlg6mnd/tq/zAWvHNCvwXcau/f7/iLP6wCHxJkHKBC+EnrnDoBqqN8hLvQh1+jorKe26VrIRsqQNmej40sdlhVQ9QL4XxWibMEAeJ7i2ZnILoYVsPwMEnWd9ZhY1zw4DD2K+/myZxnD8srUJoqqflYodoOIuQ3SEsIi5C/s9ZuWKgRSvVdtnEQcER7R+QkFj110Wz6RmQqAoXKEfimrhw85/LQ7Kxqn7A6lmZ6x57AU2uoX6vAZ6o/1xtusHJ8PKeqBSdnQlDMO+uW7Yzxqs3L1VVQA4jzPTfP1yvOnaYBIb+VkYNblK4L9uxEEGP9DKDRfoP3W1JoucYNc78fAy6KYZvDNZpMD52Svk95hNjAJ8PR2KjMTrSlIy5ZzKexMJb2k9rymWfwfmRkbZtnpW57zUhMX98USNuJO1VXLE2dnNPpEElk7NvIydEI38u8YGXUU7Y68+l7VChTB/12k1KZW4ppuwmcNiLz2mTke2PcIucwaPSsveLnWMBKbDO1SK1YLWx7W8MwF2g/P0TjqiaU/taYwgU5flKAdC4uq7OVEGy8B+Fhse3/5XP5+ujov2LQjvp2aNyuHleyTvX2jY/IOVHtZGFZQuHr+bxS5PZI7vANXNKK9Jk4ULZFh2O7+GmIhU30WgiWwEzSPmhRncNzEkJDD523aevBKEO6IkUfimn5oGueklPusyGen6Zpvru1uQPGtleQbtL1p54/zR5qU0FYrIpQy50/V9MOdfLQBBGOJ0Ax2/MlZP29ClsDhYMYUEsdccRHogutVCfBgvI5FbpEEUK1DtqdTL2sfLgaVeKb0WQRasYQF2GoKRTDe8zSEEyFwuT7spnBRlARidXrqVNqMyB1Xa/ugwW6z90XEINvwq70IZ8SZ7n7gCOeN7WXpfHiPHacuFYnQHWLxBD6juX7+ZF67sOilFLap2JQEfmQlDIAkX/Fe4k7whLG60roSXgLnJ1Y7+wjT3njgZ3Z3cOeZqmbp+m6RpW/cu/9DglwSsobcRvktCwxb0vwUkseXI0GTcoMjVqBlqlAsux0Nu2H5GU9TIh+43H+Sa5W3zi/ppIXgH6BB0ypTTWZNjD03IgRK0ON7IOqs4HG6Pvj4tZ7x5BSrbuOrjP3Kb93bJ36bJDsDwNconuHUW/7x6GVUw5/2odLykcAMBemtbwbfL3EVpxsluhbKTgVVRhDQEvFHvAATHCt7U+aGJ/yoLVU/kgY3WaUPcPz3pIn56KiUVO6W3gWsR2gxD+WqzxaDpw5/hpJ35N4/craTdLzGNH49Cm1e4EPOod8rDMRYi/yO7cCJqYNN9nubxbCcS8W+Qw9bByZVru0XcgL6RGrTFIOj38ZGJ0Tap4/bE3zLWxd3WrfiY0x5tQ2HZpYoAGkPrzcugzkf7MEwKhW+hnzyIhj351GBuXWdUj7+XRKKrAUWpPBCw9FzeJb6rzfyLrHZZCyIMY3WxxvAH6TOPLKd7STooaKmQujQrvUyxTi/C3ssQYBRF0rEf8eh9PDHf6M3Wgjq+sUt8znYXHJKfQpxG3m/4dG9v+Ritw5EZrt79UBOX4pGB3+Elv1UiAICcPvXLCTUNDbffCRjZ5hVm2Bg+3wa2X7asE3szDp4HRRYSRbzoAM4v2RNQoX2wV2Yv/OLXSACzi37ER/XZqhL+FOMK5zHqp9SH9uGHW/PG0ao6i6ZFH/pT6/qgfshfXYiBRzPWTYBwetyVj9ECcF7viB2ioE9KzV/zdHi+mxyDaTMA4uTPlr5MrFQ55SHzSqfn5XXC9QxBj7Wb0+iyqKKk8G0kswScolorkrA1Td2mWUAfKIV1UX0NtSj/bFdh03tms+tWKp8gEG/MFFrFjQwmYd3h2yrAYAmSwXbOykNKl2EgN6cr9NMTNKAr5AcirbO0yhOctaN47MPNcDL+wg5Kc79d/ThWQAiMFd0G1Tm3ULaCzSd8ONrTAPZY7h1gZLpo/8TPxpMqRXqwsb8eH9ycLUeZioFQfB68BUFKkOdWlnOChnZkyLWQ+3hPXEStS9FQQqWKsf0r9GxvCMr//GxBE7WaVXa67CKA3c7wqO83btUvyfeBCufqGbAN34jcArQRnT81wgoF/jVWP7sEAXNo64MUT59LH47UwVT1Nf8/MLmbKnus4ArFafi2SwxLjeJizO4wZRgSF6l+NmbX/EGfsEIz1flZXRUO6DoSA6lO+OaiGnkPamN/jIUENjVN0DSAohrAIlrVBfXXkgE5ZNU7Lc5WnATJNu6luwUk5nToyWtC3nraY2PceT43eR9TgBela9fBmMBD/sLpqB2itOuMDHidYP6v0msRT2Ymy8Pz+dHoTZyy4RibPJLaB0Vmbaiq03sWBSXOPBHZwf6TKue6EslRK4J9+NDGG94i5JF1bQMPxWdc7nz/BCHWOBSymZSYRfwA/Dk+rMc2sFHabmtzQ9ACMJqg+kxGIR6wTLCe1vbC+oGLHaXMcu5hQdY2AGmFRvkn33qidHrFVwvqR3ZFSTxpGk+I2m6sIXvHXhnhb6Asgzw41RheDRDilwPgAkt3Aa63wRwI2Uo+WA4jyDbMrlEsJlM4q71DbmBmy1nI/lBLT/3kZkr9GGRp/jWiN12F2kYyM7TXT4nxvZvGXeK+8E5tIVwq9FxHLnsKBemK83MRM08vyDrpWhbyVv0A5NAYp2a0YBjyFELhM+VSiGXlHpXfy4drpNzQ//j2XuLgMC4A9mwdd7DJfNHG7iCbp4m1edwHjtH6bz8vntvSGPXrI4AfycgCVBReELvJ1fv5vYL2v6ys2Vz8ybvtWIjdX9HZJs8dtn/djBNUj5B8opiaX//sFsrtbIzHWBbJOjBH54NqX4eKpB2hD4yo3HSQCudBbq9+mv6HPGKmV7VLZT1iVHAD9TVllCp6QR5V6xctImrqtOx3OBzrb+JpZyJvt1Z9+rzklhjGcKIQwg+zjAVxbTtdQv7TdC+JZkEu5pDc+oDyXwm/81H3L7kpzaepru16SOiSeAbmVXQ0/XE7+n6Xs1RXQnVKJMN9iii/7qlaEd/dfnsrCu2YvgjZT0AFeh6d1V0HYaaujXudW7Xt8cQzVnjNjcMaxYb6naj1gTBrG4oCWeSQjWXXIGtYzl4U5QcXHFv4LGr36obQ4Th2dkIBS8JKI1VzyTCKupcOfJp0hiJemgykn9K9NBY7Xl4U1vYJjrV6CkksxDW+cMJ2zLl+K3o+qm0Zriy7v2Z82TmIoP2MU22v3N0AUzWELlgYmuXQ5A0ZT2L6dJ+PMYeLeVCC7xuY9YwgM+FjODe9Mikz4FeD+7Spnc/O62mHlC/mMpnMSZzD+9yKpbEgBlVAsAdzTfGpQVKT3ATZ/WA+xNfnXxMzuNnvm15Q+5ihUj5+AGPwT9y3ebaMPA6/QX9GLiUJyouEf79Mwi/JZyCVwP49GxTDjz3g0xJYyX7IoNyq9GhzroamwUCNXlW1lHdVvEc0g0yPwetMhZPhuCxx6DoUQY3662I7WUdSP9tlf4me9emMpVQS4Rw3TxI+0fU2ks7FTJD0lS46naSJCGwAxWi+zeuPbBxor67Pxvt7rdJQTOarK0wCPWfnpQ7MczH7rITmyHlY9v0mt5ISH/oTsrm8v147ri7fzSgds9XlOE3VB0XF+Ndn67owwGu7+sxNEn9i+f7RyDQjH8uSuz95QmuZzy6663DFnrMr8jFdzHOtR4TOwsfmUZFGnzU1t4giboRFIu4xQZGL0Z9YRrFw6KKMPn8SlUbnNrHUI1GSvZCMDXX/JbtjnzzM1vz/BqqQkBH23mP53TxGeVnoKF/79WLKeTrbUc6Kus8ScwS9pJCPh3xcb6HEMl0iZU3A+lpzdZkJq1WIMolR3++n0tV5KFLcvivpt4kKefAnOkNcnkrhH7UAx8X/06OVSGmDRLGtDHKOHC8jywUFkxvTC9mHwlFX2jJVuJz7dOrUkOvSwPUNqEQ/p4rPeJF8sbePvnoERs2W2guGjqzD1QTR5uSz8MWyIoA9bKFXw6bbXZFxR3MLtqzbMbXqGdzQVPD+/NIWQo02JjbNoF5dINSX9TRacPgPttz0/oERmxavrntMaEtlZhz4H5y0VjotOPYjmC6HALfXiXaCCU/SnJIeC2D4UikkmzeNChykbqVcbtm4kimCyMYtkuNxOoGHHbf6bi1l4GOdAncWCZOxBfHdzo/+/x/ooxYfxjPCUVdtJgoZ4mXRWzEBCufEFZ0Kb3+YBEk1AV3D1Lck0gVkGLYfV/uzPQdP5UwXLgI+GqtOpYTJmnnOT03SwkpsziUmGAj+J9Wyj3WBiqAMa6pw2bk7wr65KgZ2kSaH4XZZw96E0ERroG+K7Eu169zhS0ntzATkA8+JYnZVlQ+4Y1QYP0mEYdSdmISHuoV5RlZ1OdEgrrkyluALqZkzpabKj5QCTO+q0KO1Lq4mKz97u1hnpYQBRIjlhQ1dEvyeCeyuTp1kDZrbtqRKBL05LYXNxHpJ6bHpRGtvv8dD19ukR0GmcAt3qO/r7PxfRFMa0EMFiw5WcMoXHJv9puFocANvrYuHe14eR2M6k7RN0fcdhKmb1TZpaIo1dujNtBqr3YiZJEKybVdr6QVCICLYzXS+bAXnJ7pj3hdrH+v3QD00mALNrXtKk3X3MyfFoEaspmh3oytYpFugBD9bHaQ/I5j+8VpDJuL/zcWxeqlMhGB3fqmt54y/WkkkgqQy18tbGPAi0wP7463uhklf8rsfot+9RyrKN439l/F1gV6ax4T2XNQuhH8NX257PZlF/hd5iTMChrR+/8Wo+A+OkKDH0OG0+IVydsKjbCU3FozUZr3cMAL2IIErZxczpNWbS/uQwNSrgGi0vb5CZJ5c/Pht0Ay20P4zsKaHGXNDFhA7IaQ5RQHmnKnbJTWq+HppOWpmEkOGKGZcJeo5yzYmg6Ig5GNO3ZdrvyLO0R81ujtFuWGuGcbT8rdWOr57N68mqgwlWooHYRi2hXLRf9Dm1a+71ucZHKlwFvkUi/t3eQA3RgJ4wbyF37DXo+Ej0+YOd2+whyAu20/foztWEdSt/twAGDAA+ivgevxrgcoCm/leloTgcawvS7Y2CydVDy2O9DdcrfIecRJnSc92YS8hAVgnFpPzvzZeKJ/RB7EawNAblkLq4sA6wdz5TsKL4oOI/78xzulp+rTu9vWD13/Lm7rksZ8guPx9f0yIvqK2SkFgAY6xMA/K2MQUNfRrgInoeUW931D3x9sDpQfYwhM+myDRArR97++CB5lg3pMX4k30opRprkLmOMT/+88zdNB5X8UlhmK7v66F4D0YVTS8IewkHxMNqitBY0+U+d4WoCc5t2EeSYCVVZtnBz+D6buXAS1Bg/uckl702TS9hmKs7/gxddPR40UL7sHR1M+90LjqWgILMXf1MVoFHyADdb/wa2NygBiRZB1eEQakbth63MN9msJ8sHec/JHHvm98Gu6y0vZYgPrSfUxW58nu6WBLJFoOIJugUgHpcAQvRD9imlMx5RoU2zKUDe3yI/XFjZPqiBCLmK12uMJWwWS+lr2SrCbTOqsbgPNHQQCZzIHnonFUqU/upT8QlqYOE0/RshjjP8eSBrJXo9qQQvnYCm6hTkQoOArgHTXrAn6mF5o7H+csb9o7HVDVpYe5m6PLYX78h01VWK2FJaQujiAQjcIHXrRnADKX7ogrFqReKdkRSqS2GGxXmDG3C9PLh/XxE8PAfqeY2OcjpSkzWTSyYxc2Wkhl+DczA1yhbmu52YvWieX0IFo1ibjQ7E6yKSKXPjR5cywK7GckCwrT+B0nhKQB6OeBZXftW45kPHDO+aWQQcVPFJToXozok/2Yw8KW++hUL28cavJYwujDgnAu+nAVgFLdgRJgTUyXV3qJiPxFZfOQKE05C3DXWRNQsNO8TNuqLMFna/8g1qKyUG1XNJHiO91Loh4dqoJP1ACCdXOMg8uu0R38ma0daZSP5KwVfSBAqjFvon8qkm+CGVBuOYSTuao55sCnWxfp4Kzgfl2XT6fY/TT2fGByWsI+NpcaFS1kWhqYARGBgf1nLJ+ubIaYlLW+CbJQTStOb8kn7kg5yAgSskZjH8VAvHS9KE8EJ9i+gF4VyovJZbtU+Baww6DNSyhNgRnCM0xj0NLXLW2bFwFMOVAsSf4LxhemcAHfJzbcuMSRxalWTQyNn8JvuLfGdr0+qhjckv3oXb+fxGWhohr2B1vcDYTgqICbwi5VPmobGVtikAlqEhuZcRGYnl1UMtlFRli66jCFAi8UHf7y9pB8EkeuGdTX2dRFj44gJvDjKzDRPsNXCmXpISEhl02pTpqMIKyyAImMx9+BXdmemc2M7zQ68eHDgwACtcEReWJKPAa9Igm79x+TuTF8e1knKCKc1iPfINdgSCwJhs6WV/lNS0oGSJ1VNxbB5RYo/notiYk+KXeo2B30BGW3KCOH2sxieF7cpNk0qTk12sxm9jK194tqisQV+xl9J6n/8qFS+KuZ5idMx3y3gyis7cVR0HcNXxCXuDNp4Sm60M3p2X84Fol/iWK13UE3h3a2mDTkHidUXgdkJlawHiuJKwCh6eEzeRI9aVYvf6iWlZwTEOjhZA70l461M9DXeDq2tDwMPATZ18qRgimXsgbHRYa1kBIGAZgA0YAN+hQ7oUVK1A7JQpWOq7zZaK46PTOfK6UF5A2oi1LIatbSrOJAwt1f9E1quozHoeVzheAeChZ0iA7nLtg81h3EjwcmxDUIJUAMY7hDAddacQ9COcn88dbCNI/IjA80TbprmLiosgDmUpO+8ibk2ScZV+NmWOgAOyLnozOEdHM60Y6b1/suAJlM45enDShXip6RmJgoCeJMm46C3u0MhLY+RlPUATYCgeKKCZ5K0btMbE6gF5ytpwhsQ6cTdyLni4lNPn0tWbacbTrK/+x/Yw0otHvEejAEADZ9R0598QCby+S2hb5UXMnzC+Gahc4Gjom7XVpcLZ3wdpJiZAF62PLF40AT9UKgIcNeBKzXaDjD3jhhRq5zR6L9TeUMnw9Q2EtpNS58m3+GaO136J//RFj1sFa/uHN59LZK/zmkdsxUitVA62awd7ThqtTseROkI65YGR/B191pcLMfvqEhD6YyemZZsIJ3OTIvvsBDUcaDKBELZGxm8xFm6gjvt+TDOvA6gg+XUQ1eY4NXJgLLWcrRmDaIn53YP6gIbDj39QGPbay/S+i3k5XupHogQkHWBrgoncvpIzhbn0gf+NwvfF/zfT2kGYWTJMu1FF8H4R2L5tM1Cu4Qvbdsbl2HWxsG2eqTv8nyXmxTV/YU+F157yviIe6hi3V7rUprGqSLcENju6YPQCLxIBKB5Z8DhZp87OCsi93SfZ0itlTuYQI+rEOyMQpNO1R2AeAfsCQkWa8BJZVtQFtfOjvgXn08BNZh2cGXIue9vFvRnlqmHUMBGG7czszHl5AH6XOlk14japToChCVWjbittsETayW9k1hp/npP2T3GU1sDk4oAk5iY+/G+dTIvRJqvnMtv1eUF96TOblSS8bh/hC3fbVPOnDU5MLkKsrbDFl7zx5goKHvofbbOtNZk61fDHPhx6m+J/9ctfmplD4EKTK4OtAAVeZ34lFaIieCxaq/xP8j5+22CNxVbRNvaYDaEd5D80bXU2mKcJD/OighL4f28dwJkikaSn7nNICVOL1Cfi/oKJMiDtx3qRjJXlSViz7FMrqLLDAcdEHI4pPn9YVmyMzDb6oHMPuOYYDDOosx0GLVZHi9vl5AwAyWalv3GitIMp1Rpp7BkrWwOCAJ2pit/7/bW7Z7Z3doLP5LZLrZB9Y6gTaZVo+gj7EgtVqwTGtdEwP8iRVPDwnZkJvGu8HwOLr71YJgn7akEzk+9vY1PKgg8Jeat/daUAAAAAA==:image/webp;base64,UklGRp4iAABXRUJQVlA4WAoAAAAQAAAA/wIA/wIAQUxQSBcHAAABTyAQSOEgHRGRmXEUtG3DNPxh7x8AETEBepEhPDI6QEY7LGSUWy63tbUIjx7QgCVKoAFLHxA7ogRiRx9QAplTMnv26fjfBN+sX0T/J4DKrW1DogsYGDjNSrPS3jrNSrPS3vo1K81Ke0cUff7zmeu+Y0T/A+p/9b/6X/2v/lf/q//V/+p/9b/6X/2v/lf/q//V/7+dvv88w8n+1f5o7P+2f7R/sT9q+1v7B/tn+zf748v+3v7J/tX+qO3v7B/tX+wP/1v7B/tn+zf7o7G/t3+y/5/9Udvf2T/av9i/2R+t/YP9P/av9kdjf2//ZP9if9T2d/aP9s/2b/ZHa/9g/2T/an809vf2j/Yv9kdtf2f/YP9s/2Z/tPb39k/2r/ZHY/+3/aP9i/1R29/aP9g/27/ZH1/29/ZP9q/2R21/Z/9o/2J/+N/aP9g/27/ZH439vf2T/f/sj9r+zv7R/sX+zf5o7R/s/7F/tT8a+3v7J/sX+6O2v7N/tH+2f7M/WvsH+yf7V/ujwbvL6/GyvBHvIm/BS/Kipqv0dXgfeQPeIW/Ge8rb8HZ50dIVfT3dXd9El/WtdBd90cAlgd9wlcCR7q1voTv0RQ23C2zhHgIHuCJwhrsJ3OCywPhiSwp7trPCia1SuMK9BUbNdijs2HaFI9tD4cJWFAbbTWKLdpU4oCWJM9pJ4oZWSYwG7ZDYo70kTmi7xH9ovxKjJisaO7KscSS7alzIksaN7KQxWrBK5EB2aPwhe2pcyXaN0YAVkT3YXeQElkUuYBeRUXMllR1XpXIE+4icwQ6RG9hTZLRcu8qBq6icuO4qV66sMhqsJLPHOsscsSqZC9dbZdRYh8wOa5c5YD1kzlhF5oZ1kxktVdbZUyWdE9VZ50pV6YyG6q3zm+qlc6TadS5UvzqjhipCW6gsdIC6Cp2hktAN6iQ0vpgqpT3UIXSCegldoXahUTP9Ku2YitKRKStdmC5KgylJbZEqqQPTR+nMdCjdmJ5Ko0HapfZIReqEdJf6DylLjZroorUjSlpHokrrgvSRuiEdUqMlemodiB5af4iK1pXopjUaoCy2B0piJ6Cz2AWoEhs10FtsB3SIHYF2sTPQQ+wGVMRGy3NTO/BktRNPUrvynNRGg1PJ7XkOtSPPS+3Cs6uNGudXbodT5A44We6Mc5W74SS50dKc9PY0ld4J55C74rzkRkOz6/2mKXpHmrvehSbrjRrmIriFSYIHmErwTPPRu9EceuML5im4h9kFTzBF8ApzFxw1S1bcsVwUjyxnxQtLpThg3opblkPxwLIrnlkeijeWojgalJvkHiVLnlCS5H8oZ8lRk1SaO5S35BHlkLyg7JI3lIfkaEmK5oEka/4huWpeSZLmaEBOonuQSvREcmheSF6aowbZRXcgv6JHkCJ6BsmiN5Cr6Gg5kuqB46R64qg+oleQQ3Q0HE/VPceueuQoqheOu+qoMbLsDuMie8BIsmeMSvbG8VEdLcYhu8d4yp4wdtkrRpEdDcVN9zdF1j1SJN0LxVl31BCV8JbirXugOHTPFLvujeKhO74givAe4iZ8gsjCV4gkPGqGs/KOoVI+QhzCF4iX8IDYlbcMv8oHhqJ8ZsjKN4ar8mgQkvQe4SR9Qqik/2M4lEeN8JLeIezSR4Rf6QvCXfqGkKVHS3DRPhAk7T8ElfYV4SM9GoJDe0/w1D4R7NoXgqI9aoC7+A4gix8BLuJngCR+A6jERwvwET8AHOL/A9jtf9hf7L/Zn+1P9p/tr/x/23/Yv9v/sL/Yf7P/an+y/2R/5f9h/8v+3f5f+4v92f6r/cn+k/2V/4f9T/t3+4v9d/uz/Rf7k/2V/x/7D/uf9u/2F/vv9mf7k/1n+yv/3/Yf9u/2P+wv9t/sz/Yn+8/2V/6/7X/Zv9v/a3+xP9t/tT/Zf7K/8v+w/2X/bv+v/cX+bP/V/mR/JbkXwkZ+1I5K2MxD6axksJ9PlZPJYk93hYujw74WeRwd9vYujZPH/mZZLQfs8UVSzwH7nOT0QthsKaOSwX5/VMxKBnt+KJhMFvv+pF8cHfb+gc7JYf8LNiePM7whtxxwjhm3l4CzTKi9EM7zjDkqGZwp4mQyONc33WKyONuDbHF0ON8di5PDGT+QWvI454LTcsBZ31B6CTjvjDEK4cwTwqhkcOynPz+ZLM7+Ty8mi/M//uri6CCDrz/JyUMO9z/Xkocs/v6plgPksfyZXggymf/EqAS5vP7vRyUD0Uz/68lkIZ5PD2txtJDRh7Q4Osjpt4fDyUNWvz6Ulj3k9fPDaDlAZt8fQi8EuX27u1EJsvt6V7OSgfi+3M1kshDh57tYHC3k+PY4Osjyj5vi5CHP326mZQ+Z/nITPQfI9eer9UKQ7ferjEoG4v12sVnJQMRfLzKZLNT/6n/1v/pf/a/+V/+r/9X/6v9/CgIAVlA4IGAbAADQCQGdASoAAwADPpFIoUwlpL+lIRLZE/ASCWlulvbk//y/ktsnzCs3HoHbFn3C1V6m+TPcOVfxcYA/gFp8udNx546CMaQfYCF75530b6ZBZLvz74APpf877ZdaFX+24effuf/eu+VwSw5uVD4U2Tn7p/y/Uv/vnrOBUqXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNruAObhl8gqc2u4A5uGXyCpza7gDm4ZfIKnNm8yqKv7pMJNVFxGtD2GpRX8ULoRhsxGt0RxAZTnfBmV51/dJEHNruAObhl8gqcGRvQxs0BCcmdgYIV0B4xwogjdmQ9jtRWCqGfbFz/1iqdN7+cWe+NTX3pj0LvDL5BU5tdwBzbZjJncyu9Wvi0JC3yMuMy9L60hKi12oTYjfQ+IJMISgU24axbImGiNijYFu4aM8J4oVL3hl8gqc2u4A4rfcBAnUUm7hZka7gDmm7GOyqgN/1kQh5eJLXFqtu4A5uGXBW57NkEanjLjY2V7fqW7Bm9bqLtbWUc1xarbuAObhlwx5YFBZxUhS+QVKWO+pZjJOfRiTHpJlDNASqRzcMvkFTm12F+OmVrcgAmPiqxe2S4tVVnjo8AOETF2C0KwmTBQcPKbXcAc3DL5BRBFY/rcXfoF0yXyCjYA6m5POhGf4DkA0Nqaa9bPzXzuLXfU5tdwBzcMvcrNuPVxAc0phtt9SzI13AHNwylx5bsy/fhCIWSWF4ZfIKnNruALPSa2//e0z7nhFkpcWq1/gc3DHsx2mWgb7e3Tiurg8yjMBpgObhl8gqcHcPtHYd9NXQzj00slri1VWePAcDn1I3LoEz3mQ8CzLTOTZ9l3AHNwy+QUVcUh5qD0kHJvu3G0oUvkFTm12SEKaB7G/tNq6027gDm4ZfID62O11BrC8xqqVxpeIZxqkOzlh7ZIOXpmHvupZxL0y36x+mwaWDyB9Tm13AHNwy9xkdjHD4tUtQ7wFdyCjjSuIHNN2tcWV4LH5vS+uKsfZ90Wq27gDm4ZcMa9jA4fKvoyV7HXtr2K5Ok4ZfHKYfOAObhjvRaUcCKmWRV2FydtshILi1W3cAc22GvEkpI7LOrNEJbakS+OnIzD+WqRruAMK28bazY6WNBYxe8MvkFTm1rWbCRfb34vWPe34ZfIKkghq4CCu49Nn7/CFSucdOPcL15FxarbsKUuXtvNXhyLt0j2IldwBzcMvkCKCK4jebUrODeZ9Mp/ObXb04AVnyW1hJHb03GmPDBlsm6rIhLySYmjuV3/G7fTiCbT5uCHfP4ZcPNBRzXFqtu4A5oruFI3XondBfp2VVWoccAYMwg5JVH6lB6riD97COpIysnV7b8nju9fUvcKzeXiTgGh7dR/YdtRmvkFTm13AFeg4QJLOIV8EiY8ri1W2ov2OHApcSKxx2JGeAR0VksKEwGe07FHNR3iXTiCl8gRm0B6ZwPAEovr4Y3TDYqRL5BU5ta+3lCTpZZly/pom6czs/9NbJbSp+XxgbAQl+MZeLMgR4K/kp4o3hf3vucSs+jeLSZvxUfNTYa2UtZeN3AHNwy360iNtPuBBlV0N8Mn1HtxainRpgObhCVLNFgLAz6eoZfSTN0Wq27gDm2spOrdt9efADMryWeGPLH4rwy+QVObXcGEoCfQm7DNgxyojFb4ohdAkiXyCpza7Du3QYlbG86zi/ES7/ra7JCl8dbVV8zSjDQcpKmD3xwVhrRl1BmYuY/D80Frp0QXo0g/iijfkJq9WlKXhqF51/9gBzcMt+mzdMQjpcneQ45uE84z7cSKJNDchzcO/GnhmctFLqmEywVOZz2JO9foSmAyYytI29F3sLzdPjpNjffYv2IQYJlCULi1W3b/G3uvmKHzVqhzuo94OOBDrMUNNz3oH52WazJfyCM9RNj8RAFfhiOF3kxJXKdoI/a/FLBJ8gpnDdBRBgIotqpgxB+31xzXFqtu4A4uobhgkHfoIxGXeGK3YSJhmxbbt3AHNwoonHdEhe8I1g0jLIgOODwYKSIyHfh5jRzXFqtu4A4wE2aXqfOQejdqSZBltv1L5AgbYqRfvi4nFy36PVnbMPv5D1yQ2xjgTWWQcSC9xYRrqvgEO9V2hCknBT9KYD03Vm3d9hqUWEnNruAOaKxL4vKarXWbEJDjiYu3Jez+rUbmL/zEeoE810w9Pwf38GC55DeF+FtfSt9SD6jG4SUqpB/6+ENNvCBTIthIOhaUWpWKim+hbl7mDQzjrmgvIKnNrsN9DXxtdL/u30GeDNzblQ+ujpzYzF1iasXzlLwHkDHQ/CJu34Ta0YrL/P7+1renItgrsOVu/WXH35zL9MSl80vUcPQzjoPIKnNruAObhl8gRSQiVwbpeqxNuR4eYdVoXix6rSt1xIfnCRMJLXFqtu4A5uGXyCpza7DPWU4zO6/gWF5XnXW2+TcMvkFTm13AHNwy+QVObXcAc3DL5BU5tdwBzcMvkFTm13AHNwy+QVObXcAc3DL5BU5tdwBzcMvkFTm13AHNwy+QVObXcAc3DL5BU5tdwBzcMvkFTm13AHNwy+QVObXcAc3DL5BU5tdwBzcMvkFTm13AHNwy+QVObXcAc3DL5BU5tdwBzcMvkFTm13AHNwy+QUIAD+/4IIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6f6nW0+awBTg6rxgSrmHZxqPVUUa7dXKT3Lyp6GG/7fI//cdEMkfyFmw5sNK/Y1yk7YoqnAACkSqJ/h9H/7mo2gTlLDTuSmgBbg1181J1Gqr3zw96icyAfxqTE1HoQHs0DY7J74zrsJsoVtRmxPum/2XChsuWGoWagcDLr+qVFaB0gphG8tXSQCMYL8LkuRkfSW9E/jd2HgsWeWw1mKSCsfWtf1HQldYoHrSAHAtEBw967PANgYpMvryuumtzyxmMA0yWehflPBpWaWHwAkAO9jljtVn7HJ1KXTDLRNvUG8AgVvSQNImav5A7KX810oNR8DmTu34+WjWX//mpU2PAGL/wyp/it/9JJ3pCgxamucuayAYqYbIXF14XMEe6gGrPF4HFFgNGLeqbgxYvmKQL1XxZTYJErdnGn84ynFJCPcw8D9/CaU4BVFOIlttkCZEa/9IqQLp4tTF+ODZh2hwmoZVoQg58fMMh76+oTxA8MMHv8vZHGI1SHLNFVzH12MDC/6ThicGjAAC6YL7Qfzu/UG8AiS7TwAWlxykuqM8KR9AZ+KzQBFsBPgUMY7GO+YfcSYw7ta2f//m2TwAydyoylgxWh4OBngICrFkyJ+Wx3ue47hINHAwYSGfCTbMFBD3NdL/BMHz9m2wAubmk7uE4ch+tJTKT4KpeqFjOfoABXeTQ1cjm+P6ak/M6SA0scTMqCNuS5U8MU0tAWtgm78yiMCSUEa5FWwn8PQMzgSz8nTLz+0izGQuPB3wAFNVV765VhawXcX7Da1nJKG3uTeqB46XfYCe/r77eSFOfySSP7fLGu04hBS0FqCf+eidlhidjlhMwhWOBbBX8ZWp+73CBb5NcjXMz7n0doFiLNetsa0r5VAAed/l1LUNTOGpHImkRmMhDV8fIMBWdhiEPkGrXGwuI3DOxYznYXpAFzeEwiEvpVGgHaHg/izsskCJ42fQFkXUYDoNtXhWC++6iuoK6XEjLXrlFbE2pStXre4CFzNyB9Ok/ABR7S18pEEIsRA0AANfKXoJmm2nJ+jJ33Fj+OQs0opGLO9NqF2jSqn1gPsMpZ8mgXstn4LLf4WZjYC/G0hkFVUtcqC3JDrPw7HYcpApyown8SzwbHmgNWiSp++bAAE+UtRbgm55Z+vaa52CYMWU/AjgUwj7yBb83xU/Qw6e5TFHE8CzH+4nVs/IrLT6cNfB/3egAaGZFpFnhliHvm+zFtRITmMcv09PIt01X9za0AYt+8CZ3rbvjA7IY1VTVCbh+JvF2NdOyv590NY3QI7Qag8886qs3fPvd4830NdAAkvl0KPhV8t2y7b7/JwtNVBZ0bu2jo3758RLStftXdwuB8ZDrT+qzShkfmp3Sn6KCfTmIENLy9qOfTD+axxu+v+IS8chxgXio6LWNghG30VkOsO97TEETqDQyBBkQg+K5Jh4J5AAv47LCKeUDykuBchmi/t9zjJliGQ3/5T3a7irlksjLQLBvBZ6OXP/OK9OIaXoRuVugz0LUqoNNQOtUWO8DyjwW9nuGKqPXuYF3EedLxjIYqJA9ROaE6dkmFWdnddd5n6ZACcN1kPM8ursBk+W0y8U9AF24wXTO9tjjuIahNBtG8myGh52YmhTADb+22n2VvqSGOS2nz2SrGyhJSCe15Jv/rdenUp975i3ujk/dJylnOSoGD6VH36nRzUjxPCjoLeICzvJQBAzLPevks2UCVksnQhb///m2OYCD6CI91BomWPbHgASiWR4tmYVav2yt6hUoIYeJO5wMFCwoDbk3ifAsJqclmM3Tj/00lJBdOqTBsRim2IawemKURz/0/MruugH2SRmSu+3qe+QYnmGS2yOxpBmXa305mEfCPif2iMStT7fRVt4EZh/7lwoAH516sSfUCVwW3KCI82tHuxobc3QrgK/EMQGnhjnWKiqS89GJKxJVKRT1hl9+nlwkBU8V87tfqnO7SNMyl11yIwMVnKpXKKgF01GqZQkF2mlgnMwKZO6NcmDiugD2QJYwHXoBKSiN3JTWANpiMBmQXgAC9h2lnZfavKuLBCR27W5xjOSmTIya+fo0Wn1n0TMKgS0lNACG0bwSp3GXTx9U2s7hecjaHwiIWIi0qwro8VJ7p9+YoQC7hToWsFIG83SE2QY4yQBVucygLQx4tqoQx/fykjZUk6MZE0w7dS+CEocMRW6AGR21mlCO0tbpsGMJ2Odg08OXUxyc4wmoFyCFX+bagrODPXQfX9gFl4nicPscVpR/SSjiUilv8sn6s97dl9xt5duzj8zesDh/Hgl/WaRGbKgEkVsrAfNrG3eZdMqPxl/lKyxuTbyXh9QkHOAS7SQQ8SuT93j3OjVYpDKdkG5aqhVTCicnrsakNqd0KDJFzk2IQenJO7JssXZ2+duCOJLM5VHwLa/FPtkkNF+LHQ1Z96Ta6bDD5zT2GCnASriZMU40zIwuk7cEhwEWfrEFKkAgBBzs5i9xyqSPglqjZLDlDSWE4D9A0aGdWdduPNiF8deAOuC29Tudw48TK5hRYrIJOcCDRiMMcgOPQ1Z/pKH/EsIfrZmCh3c47xH7v6zkfOV7+F7Ewlo9qGngu7v/lv9wJfl6O+gwWSbhT2DCbhGiDzbMUdMBRy4JfZ8zV8hlwYrwwXvS9j5EzXDfDFvDokofgjvRCeux4/6QO+KfOLEcC7JvcZxgdFG/HTJokTC3z9Qgq0BQcI2S2v/8XzNHSFNtHCPqAHEJAoVxGcoLCT+NdB+G25KYzuAERAG3Ay4Er8oiwuNOkAkHYk8ZQ2lBqpYKwYRZL0w0GI6OrFDxKB6kJ7O7qnqiFqjoLybx2gatWF0lqLMaObTEG0xJVvRTq4AFZS+h28MtUQ2Tx/F8na074L4pl/UM69NgqOBIZycF8/LpNu6x2FOb/Bvu/E02HGAElPS81bTgfrnRGH1FMGW8zhMxhBwCCovpS9U1OtQeGLptqQly1K33Lt9A7nV029GTFpciuvfc8fVy0xJGohYUM0Sje6orBUkoOxyI/d/ck+dHDOu+8tshXOR7mhDs5eJa3OREOv268rQrokhOCYMYC+rxLAxJb+TuIfMBfVzPNeKNYQEd0c9zfjdVA6kg3rpsJUKI8x02rzECyI0LMDWqIhpBU0H/At5a6NyprX3CVRDfN+L4lDDj5whQu8c99YSWILL0x8n2+GIADMJhoIM5a/Ndx3QmJsgW11emyf/2Caxag9GieLUqhkQJ3OXTaLusuiyZryKcGIoyvUtwN0xOr2oX7tgtRbb3ap2HSlhH4IFzltsAEjsdk3+vdjD1A7UeFlwQuzKrzRdolednOS1o+8MuDui9cXqUFxabPfHbls2ZUKFHnRkx307k0BWnU9bcAcivqlSOlgsTIJh8TRyNYDGmo3BtR/N+2msqw0bvW0uqyaY2oFhus8qIRulXrQSnMbvgN+iQF/o7UZDbC5Kor10PlSE6GuH34XTv5ZlxlK4pX55vnAoZGfAVuLv71vBB0MLkpIWndaxWqvAeZxwI4pAHX5SPtePYtzuZDxezWg1vW+yc2jABv0MBtKFuNs7l0IfxS7UUbLXm9M8WtxVQxp7COHVdwsA/Kcgk5blZnguvC60hNY/QNkabaNlg1MP1RBWw9/2ShPtwPNCspEZtbMaWA4r271YRGzjB/7VlKuc+aZS6sykJw9hBGsHJhuK6TZHI7EB50KCUl926J9C9xrpVKqXFQFhiOOTSZpIf3eAntaz3pA38amvuyRSwG/ae8Ix7XJ201XBRrQxaWjvYE1gYoDJEFC8HJZY2KnItCM1QrN280TPtLRURsYvxGtoEbRJqgt+q20QmNAbnbupWyBiTgDDAIOy2wnHZWsgVrRFmzWCRB8Q+iY1bklaWA3gBib0Bv5W6zNX5iCUGCc49OORps3FAA4qpWx3qqYkHrLqwGhjhkjk3sTiX7bUerZ+pKEOvqrn5fyi/1JgXJRdEgc9qBDuhlI9XI14qypkrm8bSga7OxyPpLgQT6/VeDhQEym6TnVs+Bb3Bs26Et7MnbWfGyzF+zDFRB2zFMeRPV8zfB8RIDy44P10XoEAm96KZrryNVO6QbnQQrGF2SItRgmUVwl6nLffSg6Y9MaP4YDC6mBrMHw/vKlTz2K7oGc4H4AVjmQucGwazrhGL9gAeoZb2XIeVMmBKLCmb+UV8SCD5syHVydaCdfuNdgGLMgae9PztfIVDRDyzbQy+T4lvMNJFbDjJ2Kj79uYI+P3i7X8slXViZqFJPJ6Vcy/RKhrtvFYWTdRQb2G7b3p8DApYVz2iXxpW6L0xoZPmpZCTskaepAyCtI3inG4aCJleVZzawfJMntzgbbq2pZXxKQpd8zW44j9XNdrQHCOEAAIe5pEE8XfQYrwGBivVlwA9WBeJX0Ejrmy0S5dQBl2Ul39Je5uDqEFHrwwiV4fmEKr4tEWTQmL6BZhK32pQuo/kDMgWNaTpYTRth/bRuEdU+ttbrvWUS3AZp0jhyN2sgUTpA6ux3E5h1cibNKP8vfJEGSuPAIW1PEIwgngBPqAGTaz3BhAxDnvZajOGAafgdkzCc3s32ehdldEWxLdZ2M6iPjy65w6yXQS41OfWXekAqt32lYXXNOCZMLMheyAjn6HJysSuNv45MVcTowyx9WYV00/uL+cyrpp9cwrHu1yBDS/Z5gLFbaKSHLKRuXh671aPLCbXRsyjrUkPBS0H/uisBLazYHVJeE/jjyoHXnN9zurvAeWVn6o8JHFmdG/LpzhQ7R+kddmV3/ipdIa3uw1WP8wCTb5Kw43UWwPjRjMDkyNh9NzaAt+z72LzYsLZjIcuqa+boGkrXJNYAxI68TbJ124ZI2fmRkTJiAeIuqowvRzU4V9pL00jwq4qAXppWFh6tmRUqUL0sg+5tmo0WDoZrldY19sOlD2/25L6zgm2DI4BotpAw6t5GisXpyeuea3SdrnXwsVnuwvYRHHlV5Me620uY/yt4d26dJ8AjeO0ZDHWw9581yO5X2gop+/0TM44T3l4Am1jCx5HpUqGTQQ/Poy0AQuhcAnwAjnnZhquaJoC/o/j27GfGHDcklCZZCcp2zJySIXJTSiYzaUY1H/L8t8QUv8zcYNYvHtQVF5g3j+qqbC4sAXqjksbbJW8SBJlG/rOMYn2vUXAWqcw74AqwX61o2dd74r+jP/QZ47VOe2rKum7YGMh0NZVaaV1LTvDnKGraH7LXfut6oS0TXawdIrggbWtmhZU5aAB7L5YrTvdec66zeP1leMyMLpXdtGR5bUgFqpJ8/foz77NONxplOno3W9qEMotJY3HI/pQN4j/46NWzAv/4R60kYRpbkQYyv+E1qVpRytfFqcIepgAuysK5lbygKhdJBkUAErHVaD0hRWnyZ2RrmEwubWQYzx3/chAq9yzRHe3ZtsGPriDmI2azLmL7TapY4a0GMzs3FjYYIuKv/UiGku6Xqwsv1f1SBxGemGt0U1kg2Fyy5yoQj/SPiYXiTLH775JwHKDP8C7iOEoMP3QwKW+PwnsC6H6O5yNskmLfQJ7f9BaHAWGaCOEHH8dA3P+jsVsg0bzLs3Ht8gXwvU2kIZ6TPIdIwFLQBMw1WbkDQXxWOAebqi+DTfCfJ3zXR4uO54+k+UVv86YvTNgkmuKuqIyVZzDgXXYvnrMtDWPlZROTYWgX6AfrQvNmX0QPYoI8A3veJLUUwljrAVmNqYKDplfcjQJOqTB6KFujH0OSlFqMsYwYgceV01mjpveNvjNNnk/WlMeDXBKNHxlVL3PYy+d745uqmVFTk20HzP75IT/v0Duu27muMRGyOlXdxSM9P/c5EgKY09L8hM07Is4W4EsOfotIpDj6sAJX72uulp2s3scHMvImTpq47AcHowf876Gm2ipWPKtpPq3jcm6e6Mobu3cGO9aeazQj3G1w4GC6O1qvMB+01OW6dkrbcuHtaAeeyJxtiWm9DJETnRli+m0C1j+OXppmsAnlSW78RXDgsUoS+sqn+8wsI7u7HRx+bcF0gc25AToMQS9gFw5UrdSUp/kbW3Hls+aEbeyg7cIsq6ZlleBLx/SsH+RwDa/9sYSAABkLPZPti7RNKeQUnn7pY8We1xSgnKkYysBTxewHSajA0SFfcwHBTOH0zScbbNeVNYVxcLqVfOpruAgA/NloiSTX4PhpaDsKQC4YZc5z/3ciUJEN71qaNBQWnfEZgtG5W2CiI2pfjt7GQEw1FpU9ol1d0ddu3fRCKRz6R5xBtOfQ64Snp6WIVXRbh+qF32gj2ZVzcQRfBUQpvPxVztsb2jyIV5cpMwhYcSsW786Rf+3ZAX2uhhHF5A8ACrAAv09SdVj/0yvDpMCERJPOqkruhpfetom2wzX+OqZ+rTFTFKIHEUix/zRgu2+91WitumfL6/QT1/narCC9M0AAAAAOZplH/e8AAAAAAC5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=:image/webp;base64,UklGRlZlAABXRUJQVlA4IEplAABQAwGdASorAZABPikSh0KhoQn06wQMAUJZW78MjsTyMn6oArez7sjgX88R/tP8H6KnMvfn8w+9etZ+w6BOrfJo6C/S3tn/zX7M+5r+of6f2A/6t/kfPT9Sf7p+oP+pf6T9wfd//5X7f+5r/B/732Cv7t/w+tC/yf/q9jX9z/WQ/9f7s/DD/c//R+9Ptvf//2AP//7c3Rr8bvR14dfd/xt/rPo/+SfNP2z+2/sh/c/2o+KD+38YPS3/J/z/qL/JPs9+E/sX+O/1v9x/dH78/wv/I/yX43+ifwu/rvzT/yXyBfjv8x/uP94/cH+zfvH9e/zv+97YPbv8J/w/8z+6PwC+1X0r/Rf3r/Q/9z/D/Ed8J/t/8J6l/W7/Sf4D8efsB/mP9L/yP98/cX/Af///q/gf/B/8H+U8n38x/qv+p/mv25/sf2Cfzv+xf7D/B/vP/p///9uv9V/3/8//rv2v9230n/1/87/nf2s+xT+a/2f/bf4L/O/+v/Lf///8fe1///eH+5n//95f9zjh+O6vtC9shog16N4JmvZyTWl7GSzRd2IeKTa8EwS1CertfTQl34jU+BHNn/Xth/CFpe23UaQ4u3uBHaOvkd1lODhbOpA5O77QGK96Ab+KWqdqcX/D95N4UN2fzG6iPhM5w06Ekr1dUoLeyarsOzv/cajn8eZrGf73M5xBiQSZqjg3tanTIKpM0lO6EGKoFC/iFU4BPLuz6qTXiqiKW9R1P4hMhqjhy7bPWT/Ztl/XVal7gmlg0DUjukXgMR0/EQ8HvVxq5ND4XKkqNPIquJ+vSvNgLIsPr0rS9UNzojd8p1B5MUdXtGwvvM271nYjhGUYgGn6zb++nYbGSGL7JFLIJTXLVu/0/eoY1944mC4o1RWerIGl4nWwa5xMMEtEsD7BBy07whcey9olLQN94f6wiTXShAvBgJIGmAKONfhT+QqVTlawzYCRqA3NuxBf1otfPrP2WBN/d3OG1p27AjtzXh2J+pHgGP1wfnhHCZJCWFU/Yv/WF1b3t6pTTzF11ODDSa+CCMykZiicqOPujNz03ZZeA5upSQYPuTe1EN1VayCUcIHjANkNqo4rQRLh2ridFa8ip00NIPhJ+WaN30Wv9Nfj6EeLeYav0jbWtTbg47THbK0LZwaV0li+HxYEA+CEeiPTSUnAwQ4C1du89yOT/bV6JXZwu514e1/LqQCdtJfTa8CubU/+N4DbynQaMSdQ87u9wOO1+nIvrdE/pqrWfpz0O/C6pAwKsdCuurueHA9Z37lTAvXjKE/yKTYgstRNy4AIrapwtzWqhdO1dCvsf5c+EM4Hy96HOq+1FKaDwFaIYEC1rc5oB6yZxRCfEQvTUgFvuycCSIe/BTjw6NmOcHinzRkSan9Fm8rZYnME6inIeJff0M6tKNk9gu7gxAPkbWshTtKVOM00fqXT/SneWPcbdQImP8lZ4t+JIsA8GcGKBDiVOPKYz8hXlok9nfE4+FVTJf253POb2XBGivRcTje3acPet+d79PqIHpqA2tCuq35FJb63xLGWyCHDCPxHvHa3cgTLTyhy9oTRVgkFyVZ5R5Q+Xe2WJL/Yj+7q3P6L+C12Knz///dcP/UcR1VWLOQtcEjh0l5dRAR5sH5JUp9L6Kw5EyTA+DFYCqg0wNK9ML68CPH3Zn98ZJQDKYIJga8dmBfDBYeG4rTS0KWd8GmSX9KxmMsF7FfaKEfbMxT9qPH+7L/zjdTR4AiUISBo4hyrpkobKU0GNrr/IZz/e1DS2WMpJcgmO//VJF//Z+1v8vZe62dwyOLK7zJ2+KYjcgTHx02et74TP3E/HFueCq/681YVuGt1OsnUDmfEAQ6wobzdervzcg7LX2T4WPtxSzn4imeyUFWDv/Cb1HLgD54qRCLtd9zIsNYCepteTzPe1YQBnBpz/avKDBpyB87SrjhUriGNSLG4PwaOpkFVjPos/uNgYWOdwuGjxCNziXGkNsW5kiCFF2nf5zp9Imyi0qCi2EnAmVelFSlH/9aUM2cqwEI0PKg//qA59uCvsdO7aEfUeNg3R63ZjD+FlKl/+XMlptBRca+TuXVyzYUczFfI7OzW0ofSSwkSJdKdno6H5m7uu2a0v7uxzHie4U+Y2rap8LGDf/TEhya2qZGKyFs0ZOqzUG0WHZKm2rOUGoe9sBi3pLZGUejYvuZ5FbwXyFv12E+cePrWxxrw6she0v4yZTet5T0L38bp/kqE3auzVZGxg6xSM5dDrx2c2EgWCrQpCeaafEpMHdDQBBvf51UFFcBkCRzEvP729uu8oi+aF8YWk7W5akPJrqVQx+GBXLaISD9MsW3oOCd2tjIun/EHVHjiCjjBw6F7gSoo+IeM1oWclvWyDw1PpPofzmDOblv4wGS1as37+8cj7j0SeYFbAr7Kt7Dis79XJQCvSw8OZFt6ypFTxsdLAvC2tgZAcckTbrGFwoNwRKJiznjbK8NbEZvX+uep9JwvvcpJM4naAYQdd7asIfFHzfXBc51SbEYKRAPCK0PmvJ46ShE8lAr22ftXXqsNj1bshbpaFbuRD47u09Dy8qv9bAzBU+rLmn/V2e5cSAMSOwOyxh7Gd7VjO5IeowBmPLe9UcHd4f/NEiX29jQtUTHVoQa+BvZCt82XuT/E1Po5HafUvX++R7HB3ky0qM8vaslptBT2SyiDg79qiogW07cq5h48FxzOJsZoksZS/kqjm7hsE63Q4cjBNgGSPvtpF/TAvbLWloHn50fhBPXlEWjldB8tsRUgnwJE8CTEnGAAAP7/+r71x8cQnUls9WUx4HuQ4HcK819HYgCX4yngIoCqn1QD+qNnCjnqu8v0kz7xcw/YccpekDNRbt6MGF+Ljwp2rXBjbRSYyPlMTAnbB5JmFTlHrjqBXOy30ROt+cF1veoRJgJ+rza00d7EnZiKD/y2R7hCQeafqRUV7Lg5j8rs0zLiRwTTBywdmmv9BuGcIHO+InVwr2AfPewhPnauLPLX/MP8Fg89mBAXXGNkOkbl9IyEGgMaX8m/qEzQXN3q36CUcs4jXUXW0RF3SOYTbeYTqUIoR4RbqHscpWv+HkhGXO1qorvfsWym3YIlbTWswroWPxFIuYPU2InSzFZ1tuEYq/QUEtTp45OtGjhOKlqBn16/CGaEGsN/xqsNdMs2C16SaSL3Dx18WW6+nQNCwvVIBfj/XBZOXHFRghA2KqHkZ1y8Ya48aicVuczoJUloi6u8WhQHvZN4I1hBUVMAzHhR/zjy6uL3NNM6Y1JnYwEWZgePJSJ5OrFPorP+82KD+leTS7sFk156sF9zSMiANyd+/D92Ye6e1brWJT/davR13L8QtZfdaVBEZ8o9SuEdiZ6/rCQXsudHG/6Bh+rBRFxkOtNQVN4rUBAJF9EZXmGVFkzDekONBGiEuxqRsq0b7JhEFuoY/j2ALdxpyJiq1KKpB0hR5FOl3ZQu9AqPfI87DxBKM7bQ2MzTXa6waWgYDg1ssmjNLduViQrFdQsbl0GnG7WsjPuaSrHYyxOfZ6LMU6b1be6X26GPF4ytKkGKDcQv8ptXbibrM0TqVyvtfftfN5n8hsmaa3u3IhM5PoOgp+s3FdfPsbMMNde4J75oO/NI7+p0b7r4jCbxbsbpu329sQRxPwOuQtDOtqw1U5UjpZ1SZ5J2iIqPMk/xI2s2Kpm6SATIGZryqHNn1VJcy9IPYAftwuyfasYlPyD9BTMmTO2VD/AQak3+1bpQpdbyELz0RwSj2lR1Fd+A38HS0haB3APKPwDIGPyF272Iu4O/rJMgxkIBcGB3Lgmx/nQlwv189ucjMjpgy4AggUm//EuPT778MDv73vXGqVWp7lR/KBXcvrpLe3P16JXBe8MnV+IqU3XVRTezjrLv9wt63f4XhwsIXiVgeHJ0wd5KnsPH/44LcW71FnhLsftWys2A4VCAOn+sgmN/zmSVdh5SltvUn97bl/8hPgg5cPNuP9ajJsOjd+AooCAN3ySfHBxkS/Mh5I7i0D5uI2tQL0GW/xY/DfNe7NhMXOx5WmsBc/uZwrzun8Em4hODLNULwY/1+La8IkJjJP11A2Y26wYyEA0rVZHPrUuhwLbuTYLm8BkBZT2tG8zhJiXT7druCf8DNwNB6w80Vr2dpZpExBp4/pNkLouBIM+wT1jT2zSB0C0wsywlpIwQlbYFLklnNxR3j6xOwVXK0SP9ape+WtnT/tChPLi8uOX6rqgT9xyfobAHRNl/x7UN/JiRyEXc9TSCfI4mlOOq4WsFX1xM4kiPrziXWVSMCWfm5/ZXos2ffsPEJqoHvjY+8f2nyxjzN9JDxI5TLK+wqZQpuMrY3b1Kbv8NsjEbtcl1bmg6gogXg/NS2yw+ieiXvVlAEAysq/sxij2njbDAOHOY1rOUnHAY8WcMoVift2bu30p9z5+ewm9zKOQKxMiYqnxI/MTzpBG/6md271poht4nds1ak3RFzH4fab2gi767X5M2coIibQcTLsHCWZBypsCZ59LGI0LUeD/Ld4n6p4JkBxx/x4oAgAsYpBiHmTR8iN/ruMzeigfrs3eRUHRJ6JjIuBbwOHpN5piDwNZiMzZVoZKBgPHzx996B0mTUiuxpG/YDi+9Q17YK0jnvOieexVNGI3jxC03GXtikk0xCPiDkv4B3LRzWDDtANbW9KYcYlVXN6YLQbPa8/9IRflLzjYQGKAsELgoepFDmHgdV+gwC7REdkK2toYCsZm+kDD+CxEHHQ8xCE5N04oHb8QH+Gbs8gaymABXmmTE5Nm47ntUuRceIT6KD1L+187jYPsa5SHyvmgnZVRf4DTOmXYbwBa0IRgZrkj+Qu6kZRqL+LHMD3KUYQVNVPxH61TAAJAHqwvnESLoy5C7hoEoS1YUrMYASHekAegk8YufSq1gZOkZosE0wuabvxV7FLLUaOpmpo6P0ecDYj1iZsg6Ujh50wksyOOKq6oinBNA/CF++LFahimQqXZqiJ/UukDBiBNierOh5YltfTzp2j9lnm9wfWUF/gBP6VXjVX0xp68a1WbuYfljC0ao35ifqDDRt7huReWNjfmAoP3+j5WcETveibYOq8kJ3n+ujKXhYy1E9IXcEkMJa01zaWAhLvl5svW+0TVKxud2yCxmlBDfG8qbGKgntjcq1u4/hABqLIDKMe/r5jpW4vXSXQNJhRDC8rWfs8QA2utZImJLY3ErCNmcCiKfiySTEqhJpnCCu7V+vIYtTtPd7Hb/5rpXECv0n8QFxHXx5QuFUEhRIyvb1z3n0Z8ZM4bg9uGlAy16Yake/A/rBTT017z9Sy7xHGU2PSqStAQwgTDZ/5UGNho9GIyaELNpsVnOxLNYt67d42lbbX0hsePU5Zu83G0gCVhk3FM1hmkU1ovrPbucYnR9OOMVP8DcN0ZfyU5NGTKkEe8L4qsouS93m9PpBVAFVi9Xx01n+CH1+Uj0+vJ2FQeIB1L6Xgt9UNWf4kMgB3xr0AKwZMVviCv5/EcRmKSvIDG+RVHAEJnE6PIPuXy05rVHvImltOrns/1w6iejcuhw/io7vf9LLw0mSQ39v4/1ewMkMjVSUWVsWXiqQlGGyF26AzJgtdWKZrg6mpVgayJXm4XMcPUV7e7Jc0SsIvLUiMUPhrDy4YG48K2nvQ4R1zaS1xUnBIMIA+T15zZykiAOgX7CzEfX2en/evqUDESJxTZvh8gOCJCzToM69b3qpVqtq1vyhFR20kAOQbhTM1WZcXJmsxyCrgqtcwUjkuyM32bX+zLUe5dvULp9Nx+APy6Lnfh/BA2bcXjtG8V6yYwJQozjtRZrVfRuOS8zvGqKp+a3yXU2y7zeFhMrXydQprEVOUGzyAYNwkffce2TC2BQ9euJdtprXi9EgTrT5/mj6nc/9FMRHn78bR4lOQDWQqQSc44uxd1a6s2g5Q73Jh5JbnBaepQSiX1wHaNmrrgBgyG4g65UMhwoOiikgzLW6Ab7FhV5PvN2si9dZ8JTX1a1Jf0Ac3iZeIECm7i0rWZhrUcBz75FcE9kblUPHB8hLW1PcZQGMJlg6jgrqu0WskxaaHId+vn9zh7e88lJN/MlmNjvtnb25n5K+rwm0OCB71KLQsg9vNIk6yqAIqlL1Qvu48OSpwEUjEIyAgGU4/g4FtiiRul6vQcZMwt/jMk4w+OIYlWRoFpCItrtTM9R/FKnghUD/iVrkiFPjC31cQFqEipHwxE3ACDRfcpo+Miu/AuiHS2Qu5sLge9hwW3mZApz65Mo4Ds1idA/AS7o8rRttQCqk3B+NPSwDu3DPGlkFBUO0D2bF6rzZ8zp+ssZ710pIakMP2v7OetQ4GauIXeE7x75sgNvjG+ewpyLCuQyJbu2oEcIwWqTm5ndHxYBVg5IvP8y3xxoiiGrmsfh0qSG1UfOx4QQDsa2lP7T68gmSbSzs3t4z0gr6txCuwGiBqPXBAmHwnO2rEYT9K4Y4nxFLTMCUy63xnzHOxsHuyum7AwzLum1VS22LYPHhSsrZRU+0CeDK3rU2T+XRRweZW9Xg5dXCQZNEg8fHdAVoxnklhDwfRcuxSMMylTR/qgbfjXAOzlleHcElH1k9HWaG63Ihlwfw4B94Atj4E8g3FZAZYl+QfjTTLggrv61GBDd/58gJz4WqguhKiP2vJ200ecUjCVmaCW8AF39wbVxMl6mKMRQGYdyQy2LWJRUMkHG98zY4AEUxSQaaPsMog1kRt9HlC4ZRcwkKE40V4EtEd60J5oisjDdjMEEKeOrYXwrZyeawcaGTO4O7CjPU4pJiya7YdRqgqA2cAN6Jkgt9B/t3beQI0hA498rAbFL82cFGPDQ6wtNytl3NT3aQG3MBZSzvLt5lqhy73n5/KiVR7IBCa0piFtw7kFDEF0OEp3FmMebxJGvrNXOzdNv36VYoOH2D6inIVg6Ao0ANe7wZvv6ABywGm8uDKJ0G4g4+m9IrLLKUg10jT4gZazhsWl20w0qvKuMcmkXqALGs7fiX0y5CHPD8n520tpDKsDX+3ebPibltMZopwsQhltmyA7+lFQCAlyOdk9z8CVJ0kqKSuc6GNAV14Plh8qpo6VHcj8ti0zrS0CnroNQvAwncy2fINPg6mTm7j6HGnODPesU+HIcxwZLJQ0Tcs2b+DuTpmWDAkrWFUMoWGSQZQin7eocF/sYqRSIugvCgVrjhaBKPcqIdbYcolxVmOUJIpqtfFpz7XSaQoAsYqLFIMIzds1+q7ykW9aUQF8wXCabmcbdcuNKS5Q8rLwN0REORjPSxQQJ+NMiMo91sLYUU0rcrtLN5lBPVGNizaSIhLQUpVY4GLh5pabsyosUGwv6iC6t96g69VMGA+oxy49htOq+FqZn/NvoSnykFjP7283G+/ALIAhBuDoUIXrNo6EuWOm+WnfjixE5u7hAmVsBB+Vmb7tT2prc5Ir89y3fIk3R0KsbiYcWitsWHMQC6l53POdCE7FEJxm76YuKK/YCuqNsLDtIx/+m5I30WrtKTF/KV46y+BHBg89bn9gvEjCEtpwIN4EKfDOkdAtqhlfpMwE1b7VcZOjQjTeXTnidwf5hhNT/Z2rzdVzP0UDWdW3mRH/pBLl0J3m9eamCS4WIdOSz4rACoejPV6qRCfbmcy/i4CoZHnCeo6t4egb4IR9hj71fdnFLBVbW5Kh7MEX3+z2YRABWZXDbD7iFeCVvX1aPAei9aWDdSJPxrFPW7gX93zrN8al0l+ePL3hc9aHs+XN3dUfBQvbMPlG34lcVHGmMiEL2+7fXM5s3Rm9+vAN9DeDhWdjVfZmXrAmvOq/+uglMAD0CEU2Wf+2NrE0dkfFBfQD6t3OgcDu2tE2TgdXsuBGlnB7wjfdXIImzqtEn4kpzT1R4WBiryFu7sSKSJ+TQl0ZMw/5+0Nxsui7PpAQVJBVNkabEZ/KpI6M27uhFDopqIMA9CLiM1ISkg/hDn+eqqlFNn+cqywLIr8OE8WGI4FUvGOqigEI4f3GANfjtA2FNU+43uj05WyG6gLgHpMy1Jf/x7UWEts+cBZpqmPQqfbOG/hHXev16aakuzHdnvVB2YLZiA2yJxozZJK/xQmsR7iQAGGNYdCiSErUsdEWA/eu+Hljz//uEXtDfCm5ij7siqJVSTtz9qSoOYisk1yzkkdVp2Zo1Ni9MV12AGqLJeOrx+JYFPouMKh/rOS1Sw7FK0YR/HrPvlYmYqr+ynp6dV+4TPnP/UbD14kwciVMHH8CV4cSrBvPah6Gh7gVZnoadcE5Xonv+yeuC2c94A07ap5BQtzsWMQ48pJBq49pt2qCndliWqdmUYEZdFEa9UD7V/hFlzTszCmEGsz0T+HRMlDGugGZ94iHR2bY6v7o/H21ZY2n0WyL1tdHrHawLFuf1uS1NXUX9FQdPMBUgfqoFFlVVL78pH049jL1OBJ361OK1g8BmjG873P2qRrRUDMQypkaaJOX8WOXv2NS3BZxRCK0ytwBDpPYOvDN8RkoX2qWa1rkEQnPBYLZb+G5PlVX6TDQhnKZ3TodACrZzVtZZJ+HvD2JMAYUO/dFOE/RsDImHxND3upUrqBBMIs1b1yr+6ZUXsXgEGg9yLMNb2PsCLfgMlgfiWYB7EKarvEUSbSLmgFgSxYlWohQmLDOHYQTGt3x8Kpg/SbaJv/86W8ax4h1deWS6mcavlKu40+B242TfKVCq2w1nyFox/9LDch/AmGKp958LJtcw+KuIMjJNZ8wpEEIWGv8RRDpp+6qPzgMn/b9IAd9GvgMtHc+rf3DwPGZhv3vo9NRTnaeSTr5+uUOOxrXR2IUqoPXLp8AN0TNF5YRGv1+mj0Lci10l0s5RHuPdWvOhZe2F3BkQ+dowDBSdGsumCyXqPkM3Tvdd3ZUpNLeucNh2QBxkzCLr2kRUkx/24OpXVm1JUY5dPKqVfeJAFdmGQ0K0FM9Hex7BILARQLuvkSGPIYa7gOw8czukn2WLzKV801XTvOPpvwnUQkumwvMC9Uhe9DwR1EcJoGdfYxa95KNoBH3WyOeVdk34ZCjel+pyIpCs37B88VYkSX5Cm5i0jQ7E/Enoerc7FSkrp771iAIR7juAAlvGCSlVP+F+BCRfLlx6EdcDGwlrGG32VmKJduj191cJdGi3yUROVElwcXlNwNKEh7B9XwgaSAJ/rL1QP3t8kUBnRIkwm4s2mJs6oZqNFW+5TIRXD/b19TQCXlxRc1f3ztsYVwdiz/F6HPj6DNEepZT9IwC44LTxUCI3+mSTTjAAhAOMDA1eJA2ZxHkiWquvxRlucAfqdop+3Q06e22fCWRGN1Jpf//HHCZ7rOntKtg9bxiAaa/MP6o+/wc2SdfGMHeuTUf+wXLQI34vNUPkC1p8/SqXQOqAkELeX0FWTTvB6mIynpqsZd+niwLJyVvCZLz76NwBZorzj0Rvehi+ZHcrnVk2MhTqEaOJbyOLpunOXPMQtcndncg1JNS2d+qohU0fOC/A32VNiy+g2JlN8HnutlBUOtZaoDnJJEnTQ64qpFvgLdZcq4ciHh2r4AFPjKrau1kun8A13L7dk+BicyhpQhJMd/i3aCHTog4QrvbJwUrDTuNaNj8SpNYUGkQ2oV6BH7GxwGO+aQ1TXpDuBrD0T/sIZC3GcRWS3b/2pyiICf3Yc7wDB9Ab+ogN4i4APQ7jkWKW85cnVXc5nkyUsbvJqiT7gLQFjZ8+NEJvixIlWms0buTolxun8UPLQx8c1KorhbwiTEzNrwEwnzDjEg5VdPovdqbOkRC8uoVFHS4th5CQ8hm6W9O6fRV5MYiVbJdUcrZdADKMv7RfowlYtTFnjhuLKyT7pUgT1tKOsD0i08kdpt+3rLmxbpFFnG2Ca3/5PnvqsFP+92A+s+2rzcrgE7fAPtFE3HeWtujW8vTEesiNzoXhDWYpDsLZVVtupJoQOH+WsV1uiMKR9b9Ig8vIvPQ+87E55PLfPig2PahgDsyZfBR1YQoRl3aE4v+DrhNxpV1iu23RJv+Rzl47A8eGwtcyhwIrSud9W5+Z/R59/3SUEvMdlLSUFIy42cmsfIvdAGEEUmV8XdYLEWKxSE/jiNY9GzicnMz7v3m7XL4k67CfmeKXWopi1rYGT1RPfDzLeycEIxsVl6jg1Un+VnN4QTMPjdzCwYKUvgTSeeLJDh3OnlP0IAum3HrI6nFoxOd6c+55mEGQfDqXetyLhU8X6/ZK5ylIBnW04Nc5rLHwj4GQcwjnBdVFlbJKHnotjpl8ZjELpWdweflhfQUh8t6YD7dgB14CefPndaaqAearTa+MBFFiqQDoIYdGtyUCSded+kuivB5KSL+VZw0eJuxFE7lpuCbAbLLxb2G+nuKdOWNKfiiHveU/tlibCe5FeWPmQw+0S+r6MtzgSBjD7m1G7Q/NW+MurkXg6lP83UkcIi/602hlmWidqfFgEBb0bZOkiu/qCETydt68BbSqQFEgtIBqfddoPx3nQfR5OLQgj0vBst9qhS7xzRS1VkpI0U0KKdhjxJqwjRdzjaex3maE2uue/S9PsIwOqlrZf4acZJVk39WQCfgUnHkQEcs1weltjBQcZYVvI2bewE0xO7/hSDYGXK4jbbM8QAl7tj/wKiK+YGjUKQRNYoyjDMd/y+tawDXCMd3Eui2Wr4b2VtfS+FE0YXW96JN1uheCwjyh6ttTSltepWuYrHfCpXUx3/Wuo1qg5flHrtJn21HoKNRpv9cXhv+1RRPgfBeVokIU0zGRX5jtBNFFOymKxg6/qpnhs/ZyCW9UOmLN21evnI3t8t4N6/HUYZkJCRxnyex4ggM7K6DoFCg+xe598fE8kC1LI+0ifv0//M0m2T4doAlBZuNzOlFwq+dr9UFLFJZruqN3XYkZ64Glp45L4tiM1m+EBxhAgN8hsTDbZSpt8rj7eql8iIhPyArdGzWvSgDpL/V+Lwsbrcqr3jn+7XTz2vu5etwVkfeLUamCyGUZH9CaqCpEL7YFo6LnoTzE+D0/2hQM9SZOnQjxgeJWixXx6qfVqXmUhtHK9WPcxN66X79uVJbQ6eUg4vL+BMKa7bVt1vZEqN5CcDeLkEDVgWZBbQyGaSpbsgj2gLoJ1zZ0BDDh10kZFfOMwVcBEThyhFJycOdlVs6K+8bzEuFm9FsG5H6Kqyytz9NKQ9K03iML0jX/qtpQhgOGjvxedN+G99QzHHGn+veqLAmCGZ1B8LzsXUlzsJ9ynNfpzp2CyuiRPO5/wj+sArhtlSk4qiAjZpm8aAfbCIfKW31GZW9kKgcaUANbaFfpYfw89A/6X/EStnQlMEccH/1WnH4np1pSYzjOim5LeB41KDWRxDUxXNHUnMVunDFhXqAVPhcCf97KnNaqxyyOu8osOd6Gy6IKb8+TDjhHGrzo/ZonQxazFf0rGaBBU3ZFxKVMutepUsC2n2xqrSWfA7+WV98UM5kNAs/rqVZAZ4tMX0LCRfFVYWNrrByiKtPIIoqE1PADjIMRPOgf5QPDw/DvSmkWE7gHk9zxQwFAqTBP8SqioSsDVugH+0vm1BFGdB2wHa0OPciuQul6Q92auwwRjm4D1t6UevPn57K4XwFMwZGMa1iDlfsiZHDHwrKbrKomkD0gbbnzzbtuYiSzurewN/ODZulJO3NShKErCs3tAjSB0vfCTtrbpmrbZkosbAGg2vzGPtTHqKAtgyOf0kz0ozLOsKKBI12lj1joxJf+XvNOte3bgvGECY0MfqVZ+s0FcamOvpqbhhuA1TYYuwSQdJLKwluoBtGX14DCAcJJf/EAm7HEZE5um1l00akldob90YdcYI8CJ6HR66c9QepGb14lprA/lT6M72Xgrkgk+2YEd13tyXYFqtpncZFxu+e4IDxigcQbsUPpx1TWQEQhjl/YKYZvjV54v659UUICWsaY5EZUJAeUKf6JiCNyQxcla9UAmY8ad5vlnDDu7u8mxSSnXP+WvMYhN2hNWMjs/2PSIQCmPoTMXhT2G0IrI9OSsK7OddwtSb/qBFCXEztpemTGvouWNjYjXZO3zGz24BNDlJuOA9eo5AAW4XM0WQFbMFw03AIHhGBicT4UGs7MliGZNxcRwQSWd+xlcMCDa1UdMHEwKH4OYS6/nGSYfsgE4ZoFgQiI1uZ/CRhDEdno9kA/XOWtsd+HCtcdJbhPMJT9HgSWmPCV9aeC/BGHlFNb68asF0g9M8dY0UXGGTsRYbx0tiNMhXGZwAbOZzPUXavqOU8utSpytf1IPG9f54v+YU9+GdKzVyBHFlhdpd9G05yHNxZ+pf7ild0jjulEU77EGfkqryuDIocSm3RAU+RgS+dgX0rXHnarxCNPx5GykPBcHSED4ksXX0wTRqxQaqtxkIGWcFvqGqkaCqJm+RL/9Ce2XMYsTQ7ncG6mh9usdmdTmER32pGRV94ColBZFs4YRYeq53sdI6YK6n8+YYWWAQpXQqKZQadBABa9A7sZqISjViFniYMgKsGWlRKtPAJdOv5fwaA8oD9V54tmEqQ2ICekP+jZ1qwJbWcDjelzHVsmuYXk4r3ZcOALbmK5BJQ9nVarsNPlYJElGevMS9nc7cXhV0GYOF4xFQo9Y3e56BFQOU5Vs+alPvew8UGIr/XBtFxF90ZIGV2dlzaCSI5jwD53zAh/6Aa5nPN8OttnefDhjkL4BjjZBdsqHORWS0E/qyVTMGKvbuae0TPu4YHrAsAzOXnB3hk84aX1TAwGPF+ORy0UQmXhMAEpMlxardnGpwfNboHM4O6YAl6+QWyq3QgEF/G5mDQ3I2gzDPTPZnkIKvQ7y6z4cqBzPQQMXufKeuJPupGGVW4laE8TG515HoZQDqJG7B/RFxyQ4c3HLRbfPVVMfWNVjqqT2u9owYCToa08ZMjnEZKYtJwvXOBDITx/z766Nc36WcA+uFkifE/zieOK7o9NGaM2ZNvi7gaS0cDddUWVqNes1w5K4eV3qQw3cZYMQwYXXOJkzIxj/MaIblJr37/eVkFNFsr8TrdpWsOuAOW7dSA6yq176faN9fTs4OtfktjX6qpBxI+KlRSw5JyAc5SMFpIQAzYCPbb4Hca2JSbSosWljD3WcUTUebHrjM9NdgKKPqUQ7aFL2us8y9ZciFszm3bX0pCE5pz040Rh3k87ztMj1RSGr8JF+jgqFgAI1v46jEAxTTPYJH7UTo2x/kKDiG63Qond79F8r+LuooB2KquHzLg7cn7hKD/Y78S4WqBb2sJpZ0mQnDU8toLmNJcWG1yw5DAeCOahg/+CEGrJGvPH0v5lSG7oug7aub07h1Lq0lJxq3S3swUcSbRIoADpn0sfv8pK1X14+mqLc86xLXT0KeAiYR1jzww3Dk6/gOhav2jWZsoMnTo8eSs01oSECzCP0/jMfe863R1Dsbsu6NkEZjLSYO8oZaG7kOIbtU4QSWdpgtw1u7ti/aPFaYGEPCi090ZLqvWRw4Le8GXgIGfsIM674pAYWBZM7DIs7WU35gESyRzVnfc8byJzfp/U5E2fimDfxWAGbuQc5/I7G2a/pdikqsofPDNlc3T5r39B88RfCCiEQlFRHUxoWtEpdHTVcJddO3mVgVdWsWLHEpK6Np36oDhPasYkzzwwdIY9Tuw3z2l+w7j3asETUSBuhktxopi2eyoD+RXgfweSoOuLYbZBsbQWlEql44pL7mdw4YzwFRCCOs2PsyDs9Wk8RrVjwzGzPSt4QgawNtIG5W2Y0SO31Gbt9wpkHWbXmYCU1NPtdM6BKxNzkapXZS3+Zyzm/WWIP4A/O7DuNIiisOASUHeGb1rVPtDRXis6kQ3wz1dli9lHgNI5hVXTCYPFVpQnGmd6dQxpg+rhe9F5rcgf0upNGnwRYnf5YvNvr8UYOFIqHfF/w8pPGcaBN3FHloo24zjvKPSWy45iu3Ag2nFfOrurg7+FYtUbgq7+NIKxYr4vOX1ufNxoONewxnOAfz7u0+rSsWqwycYNhdKmBrAupACqXEcpMhOhq6YTvNRjPkGDouAWufi23q5Ncplzv3WOzEPu7lMsx3En9rFFHzFhewxL4kbSeebXM+5jrWcQp5SApcfGk02nRSYYD8ppLJRyAzttiyX9F4cdHkSJvqju9HirqHD2J5MdqFzR0AkZe4WDKCDRIebcUiADKwTvjMva+39DzywkBYyzQijsXxit8cs0f9VY+TcikSyFEHl+UAO14KtdTRmhS7wB+bqSzUATzq85TbxZSG0BCIkJgpL9UsNGPul1mOCxQ2VLLVqqLshfvVHWxQ5EOS3jwA+H2iHlc26hy7+pBL1Io96tz2EuM/rwg4q92+oOB8GTgECez2GHAlrWaJk7SObUByUpwj54JglvPQIOgvgBMQKKmxEtDmHXvfxW4RYxAWwAx34GwcygMykpGGosLNiTW22u5qbeSYih3n/fT+WPuN+m72man6WujYxhQkTJ7kx2kjplDlIWhoyM4dG27W0/+CCxjBhsYFbEhEN6Fa2fyO1sMwqU30rWGkb5On9dxw/Vi4olGqQ4dvFACL0H41fDh2+c1mRAbW5GtWKPV6PGPVy5obEAl5QrT7N4mgsH0ViKfKf8QpxZegf59Pzd6JCemCIDx/uEJwKDhnioPlLaoHiAfhKo2mqckZpidq4SchUsCNOF6r+vDenExNKrTOWyjhBbm7tqdqQE3MUTmXvtfpZN17DMOkPodc7rG3aOSnXDgr9DPf4QHdmx+eVkcX2p94GwpBO/iHMyj1lXiQeTIfHV+s39/vcP2/U/NeLcLesKs9Dn6Cuygv+Zb6tBBaYU9AVysv/muqfXNfmU+Uyr7j326rB6McmNJSLqAcG5NG1CH1tM/Gogr5437K5RchoZDqSkNeOUikql2VWQ1u2bVMFb4Rf4ff/kWbTz4p+f1Fd4SV5kfBq/ZCt+HRXxOAZq3Wj8lZl+5NO6/Btw6fbkukfbVNGH8B+MOfp+QFM16V9wLBxVdvVf3Bl03P1WOjbJiNheQrViTvaFCUk+YueElFBpspe4oc47n871+RPrgQozsKWU5mc51FLjOWZ8vihx3HonF9j3TEQ/B3WiqMdil/QMqPnjjwA+mm52x4HuKwpTnxYK22ddxyqKgH3sADRMsIc6vGQZ3hbadaP0FOcJhLO3w3h3uKYUh/W/vUsizaiDHmzhpFBUekc2uwn/+TWavoglmJ8+lphr1e/qMtNZSY748x08dY3KXDurTeQxwrjUtKf+N7qXiBObjiDuPcPeseezcvqq9nMiUi2DqAk3/NGMoa00zXXfVgoxCTpKhn69BIJ8iyYCIERhh5Jqm8s3vhYMTlzAVs31MtfjMKEJAbK1MlnhpOnjcRoCa3wNnGzpax89MmNjYncmgu2r/YyH/J+ujXmfJbNKZCMU7ypwmWEC39b5+7l3BAajz1GIza14faYCuaAeOkd9qfYZH6JrPE+Z0uyG5P0eM58LI0kvdHu0OqjFX1l1BWSDtWUq02hw31IydgZYMaJ2uMpnDoQ+qYMZNwnyNwVFu/oQ2Knijph4a45kH6FhI8goTSWuaV5flHuAsSxWuQrMqQk5OjJqN7XzsLKdXLiUX/0BMU8+O6Cmb1vC9aD9QRI2X53whaKPj6MYGVNtzbH2JCJfMMKj/PaVDZVo8BtOqHhTz06iEx/75V9HGxBWAnI3rfDW54hr410WXtqKmGwFhtLXaFmGl30uSXQMuLNTOQKRcw0f2xJS6mIArZVQpXojj3QgTiMeq6a8JEgb05LWC7w102QczRTVvyXqKaQmEsUYokxdxVHM1wypq1htRWCjU4UlywoXiGt3Ycj4Ix2Loz+DcNYWqG6tNm5pCdKkna4jRkuPN4OOR5MKUo872XaJNsTNzbSZyeg4ZJ9+gPfC/QgUTFtKqiNd7G0h/rUjhr1ADt0w0OKY5dvFguUxozNJoHY3X/MdoUsHkPXxUDRVgdZczdXdGGZGFtSiPtX96tIed1F1iRRzh/Mtf2M+1eROrpj9nDXaLObIjv3KZc+WMvT4bhJeh5dIwygJE1+KLcF/SJOskcGaQ48QHDxOtmW4xP1ENuxeW/cfVrDZIgN7ZH+YVwtoRO1Gqj1PySuj+RJSvByXb5CtPgFK99yLTYLnZn9szz1N6FB/5Bl6HuCW7ZjV93LAB0p9FyNvP5/kEK3CVxaIgxwNQ+9HgDPcoKRWHiSuPrZdy/x9HlV++G9zS1s9Vlt9Ds37xt5qRGWe82guLMFENnGym5+JA8aCHmAjb8B95PS8gVyFssV4uEac2DfMUv20bfgDrCDlRJKjFDLADb9LYj0cbwwf+hqh5YdeMm3PwsBvhjjOSkc9N4QM8B9z9w1UhmeR4Gk9gDVAzhmUZHzXPy7QfWIibSo0QuwP7lKZwTQYAtcpESosIpjZU2sfZt/aCs1dmWn5n4jS7GFA7un9dIs2WgMBX7mANeTYJwLcPTlTdXsbFa4wfkzouZ/c5grQv4/n2jcKFmmNDPzfspX//0WVTN0tuFHtxpFEC2jLanOMvv3M8yXHnJC21RKF2SmY+DwE3QlDB4NCBaGbEUC3cmc87DmDAZx+AewXnCzQcTB1TAOZcAsnKjcfws/6opgHkvXVrxK7t2zfhxpoHNgIvzYl8npBaDpmpSGrtjBL+1N0Q2k/jhctONceIAjr1Ed7LZt4vX0G7Ch0pr0H/F1/6yiyg1tGkrHu64FqP0inEEEa1TiVMJzfiTIWM1bEaQFz06FgUQH71hDemcHp+URH8KdApLasdlhpahiDbcKGOaYVdfq2zJBoyayEyGMxloZYDi6kyPssb01WcvD3uHAVQ4pNaasb75tNbhRqFhaWTFTRthERKMnYp+rlYoxmeDRFUIt7WswyMygzm7tRWkiOfrGkFp71ViQIlJ1SWuXsdu7DI+/aBCRDFcZ8w1XC5O5h23C9ufJd5Bi9LAXVuRjFx67MaRLmRPigG8uS7b90ZqBZkqHx2GpsEAkzMFelY3v1lRaOM2debj2KC/oAoOQ5Isr6zsS/2/N/Swt5i1PwuqhWfb8ZIe+0WbYPh9QHJodaiHFe03i39I+RGUr4uJrKVM3h9AJogf8BYRQ0XlfHsU+zg2z5wvxSzyx9V2LtaTedMqdCR//Ve9YPrfij8YGJunI1BEqD4pq7K/3JEPM0m1hSXmCTbgskYwMGpjjyUvaJDQJ4bGrdgE2dxCxFgqXAKzPwXeVXmbDbPfz41+7rtUk7okitkbvZGHDaMqqf82CGgo18hS5X47aP4rzTnLFEfsCbZn1m9i1spK650ID7YMdmhj4jFk/oilcS/RtvS//NtMUviDAiunc7e13ufVsHLj7xstpYBnlgaqsPsmkgOQcZ/HsqxH2Bi8QFGBFJTzp7fmBDjA7aN9kR8VkJZusMuw7OdrtjMtdKT/DIaSkt9b+C+Uxks3Xz0myg9oYDAnwzKZuzEYBtehdDeNxRP0iwAx3svP+DhJ/EpX+PKCJrvAQ7/Zjw1NDGg5IjmIW993azysRsU1anpoY4tSIOoTTbhmNQlHcWTCeDlgCtnHJ6MjR2xzbo1QxSrWcEuJxG5x3Qxh6EmTMUnrRO61Q4ExZbVRqnbsNX+1TXczrHkPZd5ymzn1EfxFAC1daE+YlKuLeuYcTDGBsy0KqLcLHqic2oxoeEd4oRuX6vIE7GqEz5Cu67f0omy06fuP7upKG4a0mWjq/k7a2ggZykNWacltv1ELpCjhc3e2Aq1QYIDU97RPQ+E7T68ONhgW6tCHGg9e0md0O5+5kqzwPhD7lNcHvFQzToGho4eipvMCwzhBwy2FlAQBoe5PlVhawf4SgqDM9LQS7TIkjyQd4wBmxBriwfPyg/pMH9tyStc3M+f/JlTF2PbDs/isVFE0Y0zUv5n3jkYtOvUf7yuIG6Nx1jlW7kOwAdJRQ2foPj5d6r3TOQ5TFmQEAMG/WpF/gJeDljMOYLHT/OiNzfgg0sHWGXKiSggc8meLot5w5SIC4KTjMBXOc026szLIbGEqVEUMswGiAHDaarQZzRur56Wjfy/vRqyIj/O0DGFpemTo5CIwU39mo3Y4qSJjJ34Kc72I5/nr6mO7x5SCJpLh4BDTORxyxuaq8A37nRrJDk0XEA2oZ/g3GWgBX7c762RqPzZnmDda5jowi0Vi8kq3twW84mLHUcft7uHfU0rbeRqiGN3kx0E+8M/HbWWgbatcZ2GlSBG9v3THdf7q3wR7QJ/1lw9SQZ43SfHPrHNsyIEOyA4QiKoJ6nuysCg00oSQMG6ySw/vUFpXYgpCOXil8naWLAUlvU7iz1nyCcwb5F6o3RMd4fohzetdtFVSYonRCH1ayymn+Y4FFj7ouHw+SxEQuVv/mJ2oQ4nVUMfbcAIWwYZtt6ZNNinhKZG/oxSBbvo8XoYd+/EwMF+8+mmnzZxHYmqtWFNj8Y5By62qQMz9ecw3scLp5gEG5nHal4b0LtqAorJHso1RoYCPRNb0j4NV6J6UjlYbjizV8Y25F4Xduou9dhBBcq8GahVvaotkLV/3PgSv+3IC5gN+dXg6IF9148gCoD8WSCcWbUrl+X0lQ5gEpXaKq0XpQfmxBeu44MD/zjgZoRjBDc2PdDptA+7AIujQ8cRDdLuphi0DFL6GlJ2LpmVXFmdQEaTfcgBKaE6UlJBCr44UtOVhbhCH/u9Vp7UUk87w0OKC98JyiE/RayMxEmUZnSwP8Wp2Ha4qn/dV4xoXZMd/oGeUayDfaVxekNg9NfIc48WGQr2eXhPdcJzqHT4mXDty+fN9jK8ZVumQJfMxjk+J9io9K53kZSd7cpN/HfLNYzLBulq7ICzdLM91ntzTD0B/N+aBkILJk0yEsrSjf+EBQsqhAvbuNekvtIZF4QEVa9y4wecx8aAr+cQAIFiQkkv81hGeUyzf4m7ZNgN/MI8AJpBv8cnc6oucqVNMNYmVj9rb3FBv4y0peOqS4MwYoQXiBeicMVQCtMyMp3Bly40e+OeVHjuiaFwsBYgBQyh5hbhcF89OMF9P1lPZprrhe7XmJ7XlRvncBoyrV/FhlyAX3NsYwXR4/6wthq2oJXVr3r8fsWWIbYP9q1q/mqnNf4zadv9UHSqn5yTi1ynnRbk4fHPxoFWUTo5KGs8LZsdaLqWdu7IGp+3lt//fSXnanS1CMmEFgq5xF0JeAst1hR6omn6iA4pUkWF8CiTSBngAMyjZhmEORay8VAwAX4QWAXhVFFvWcLxd2FZN2GOzOj47pAff+xTkP77h8nh1Y8Fxv+ne4OeqD2eOS23CG+f5688yFRwb3Wq7iUy1ucDCzQ8XfOJnWOOBs6SgWQHaudimvzW3HEEmiILDJCTHJQiPrbcHiHeC5zmoLPu1LODxPl+IHMlZgBzG8RzGSUJlPPOzKVYPbwgdw8X86v9SBm3FQD7iv5dmDgqhYP1SQVTWOuSwEgGuN+UKnf/1vDNzJlSLZ4KUKxZW7SufkBEDNYniOubQNpXBrtQqfkEX0d+UEX7kAw7JKPxoaert8t2uc+38xs6bhZTUQjiUsrShYIXfue2OWK/YaRkALq3svXI0scmcp/QGDp7JLvnU644pu/wHVXEjuhLq/EOodNSgAAORWCXpOpJvROkAp96FIkeSStAo+bVuJ8AJNIgoF9HxHQONIhiWEsFPlOpq+dCVAuvLE1QwtkG3e5J24PyJejjHxEPAeKNc/RVieWHJV/W45H4Ads9jMvUTaq4TKlESMR34C7AGkUMsqmQImpc3WX9CjJZDMtlHwCCLZHWaV5p221FdSFo8AEkQFhfna1lnvZCrcIR5qn8cpiBu6yaNSmnhLdCz7nwQM2GxB/jBTVHH12ZrMYHFODSBDaJzaq9YjwuXYXVR9hM5J6lNHtVR6zni81VVYkM5lYCNvfbeWvacEANDQydFUjxvCjoU+2SDa+bGpXgbAxDEd/ajRWpVyEaCdCQ/amlIcT8MbciEFNGJG8G142ZJCHkKG1y1JyGtxIUIsil4dxsLM3vY6BDNmo7gFxoam1i1aYFAufrIamqZxqqfR0xdPxSmOQXhz3QP0Rgo/lxXxkd3LesTruoyNopdhB68wJmGlX5+XmsyyGgaudvNNLmHJdGaVCu71Ld+hxKiP5z/r/UHHukW8qO8gFWijOQaZo8/AbEZyUj+sV5t5UY8YH2ost15P90d4bKJpEd4RV6PHvlSC/7l2TVmDtpovxnaEIYNwN/Hd4RoDJ3U2be85i2eL6+kwFY6ZP+XhoES8m9BogpNPwF22L3u9X/96Hv+LD/8nhy3C5p44UFYV+pyYiEV6gG0SbaPGPiAXJCqGyTGpWmHxX6xjtD2g7rUjp+KWgJpdAxn1RP9lnS3iaoZezvZxDdyaO1bKju4nmqx3rv/hPRHUv7dL3IIA2oNZTvwhpgahqP30n7znm+ZupdPGYKWI87GbBUH2Nx8Db55mGNxThKkMCK8yx0l7SGlfPKmNg6jE1CFmDwhjqa2d69lLfsuOoWl4N+JeXMrklkrcRKO9K018X8qYHnwAU/jRyAjdtbQvOtgv1LGKglJm6nAj+vi9CTtSLCz/yT1qGcfvYvyadhTPkbSuPHb4VlQX3L1JRa6+jAmJQRrz4QGijA80ZnmC/mfABtpXb0/uTKFtCj2VoMPzFgEu5kWpnoHz464ZYr/Olz7ScbV5ZtNMag54DhZAOQ0wStEAJLQAws5WWnPZWgkzOaera1JHOBxnrFX9N2RZ3wcbkOCjl2QkhfjfzBdJVoBAegzV+vX5+JWp+LgNostxz4SPy/OW7lqcZuujjzh3+QYEFHO6l/IESQb4ZgtdKUG8cvY9apaQlYJ1dTTEqNGxWNzsL5/e/hFkLNNIPx+kLbq58cPo/ypBw1qKeQLvvJT1mdS8JxW31ScIl1+uSiA++5C1AjqiabrQlu6r4LuZxAhQ8N7Mtxq5nnFY2fLfBXECiZfZ1Ec/sCwjFTT08WeoKTAH8slJWv3+Q50XA0ySu168WW+wIlXp4EeKsHPV1lopEvehsmFgRZVvFBbVI/x2VjsU8sliomMEoNumn418/OEhS7qPUa+prPVYmxyc5N+8QY63IZSn/Jfbdvvr36j80ggFNmNOzqKzmNecOnQvt0XSK8SDwz9a6iqJiTk9v+VhIZvly8urxEXo2fxf+2LQfhTsc+pZsQhAPCS9H7V+euJi+rWhrqIjcxH03/m7UNXO1aHEuv/XEQYRAK1u4VW5UJJMqRu0dvqcFDKwkZln/Rtv5A0hf0gTJuZPh5Z0lg5pXThLS2RXQPQZv6h/rseNtoTq5O6gsKAiES2DtC0jZiI8YO0oKcKA9stBJJnH7kA5nbtB8kgDqQCj1q5HUW9IkEJ5MSEQUGGtYKfKSIu/q2KJKGxsvvs5ZLnBDEPv+xdUwgUOzTFy9BfFDjPyxkEvymccUH/UH9CFLmBIe4hUo39BFkkc/g+BuJ906kkuH+B5vyPaNDrwioM32O+43iBpGiobcHutuzgXk/cYGUlSrgdrgd4IGJ6rq+g1omwKc4UWSEzNtAa96a+cxrSWGSLP8LpnScQy49r6k4IGZuEfYGL8xBbayLJ4gJLSiOcJslm8TQJ4c4CiGMpPaUDPNiADvQWxddoA6xkAymN/0OPVnCfpZwkc7BjPVRZ6OjsIhAv0g/hqf2bYS1lf/gHJZse4HeC4FdkcG7dEJincxgCE92KQc9gl9pisVm2zT+gyRUY3JY1sD6vd8nrOxSUf7ZIGINWx+2phZ7U+sW865eG6rr1hQI495ABEflLmg1QUmADNWIyv1u1DYgAsVRxQE7zM6x65pUGi0k/NqHZnwNx/VLY5Kaqt3JZpQTxmDp05zLxOQhR9JStFvPCuVQ2bPUQf0VDZ3X/Oz7z+UAlH3Ins1yZuFqctkJeeuvR7A/wxvvdXa/KRm7ROg8gL7dqqEQWt36i2IHsjDLLpqgW5iwGvvc8yc+Pzp9ZUnSkfNDAUtBApgFPtLCWFC2lfIU8KvU7MzZXBREYefPc41qj20/R7Y7kWaKxObHQhuInRemKWOHGWsz6OkFQtVHkLm3u6E3PWsh7pgJ7H4ssmY397uesBkirjA7m0JgZogN9mWE200z2EYhWdQirN9NbTKuBWP5s0ql4B+YL81mE/x6OTXCXLXdCP+bRmBohFetRO5ylae9hcrRguVUgJ8bolvzN2Ksb3zzA4U6B6Zuz9jQQskC3aKH/qx7wKFmqtqBpagZEj5UBgJXE+uvHB/zKH1u6lTcr1ZX4niycqa2PSxhGE+yyEXQW6l5BEzAQI9/Qr9ODfcGvxmE4uMysCZtubitrB4RvwUX3E5Fh3gr77MAr/NMI8CMdyMJUSThPIx3MUuLmrXXIAO3fPNlFcZKz4w0PELfu6sXafk+YDs+0IhtF97tFLLr1wfkoHd/To2bQOljt4JmbFLteP8SNQLACqm/Q7HdZXLaz1BFkAKMl1ItBthvMi7iaUYE98rLooxBQ7qaqM83naNOJSGAOO3owL67emonChzZMPTQDqGmpHoasVK7nLvErc3KXaqnEp8bTfxOxxxofS8r11Rq1bu+MFigvuoF3rQ5JNWblYttVU0ES0YNJgKf2ynFuwaA6IBt2v7h+DiH0ZOBTiw0Ndv89xh7+sL151p1SmqezwQfLomAZ3RayfCl1rM6X267MXoC+Os1Fns7IIEGhue1PjAPqIT3Ldm/EbIzVxQANu6Xc+7sJeGbjuPsJ1ueG3xtXpc/AjbAxi1HgDh4uS+YyEE5dnoMIQro2ntDYCZBn/2pmqaw1/Tl4nMYDo9fyfMSfgzsB0RTr4CqwOleyxuUTQDp+ER2/uJ/l/N5mPkhVqSQyBG10VfOu1ozjASUCV4wPGVbrAED6Iw2Dufn4DWDZFCBImEprJJEuk7O8fOh6TeQTg4TrMdMpvvBHrYP4Pqwwisf/yCRaSgRBWs2oALzckKPksHHZeqBWD+ECVfL+MpOhJ3X8UrtimgswOENt+wt9uCpL/B3h3l7GlqNiuTzf2b3ReqXWhmAstlBGCNB2GoTUb9rhdneV+lgMJ0Q0Su4aTeTt49d1E4SpfUx62ZI9mKKZoGCDU1YKSJIOuKM4jzp/RsH6XdOOP6Jbp2yMH+aBKx3m0H0iDGUMB7/Qrs3YpapxZWLjvmuhf4eoG4fgH7q6Pxztq8ZM7gPqwArfdBTjTKpDqsQjAnDQ7e60jpnMElh4yQFMb1eCO1UzGw8jvureMV3J3UVrFLpjlO9M7snvfO/dcZpyQO/BQ/SaqZhqf0zno1lHvOOZ0MmLr6KuR/WK3GY0UgcmKXAmxLqYf8p8plKUCFY5oUShZ+0rOcoBs93OCsQohEUkI4/l3pQtTnlP8T/mV48cVDifkftd5kzv3fXY1IPoSSjZS++Y6fAlWo1MXzmK+5BJZZcfn2qh0Bwp0Chsv3baO7RUa7SBV//iSoIsZi82fIZpz2cArbnFWAz14xFRsWq9LqFpUUpR1CNRv4rekKQZ78zwhsaPhk6f8vyXDzyhJEmQZyn5DuZV8WKkz4Phn0/V5MNuT2meDXfkKUDYsgwweJomhASdJxUeBZxgATA+RWwwS7HVWq8BO6DLWdAxdw6q/nBfavatApiHyoDp+LHrLF6sVey8shvj930mjL9MbAok9g6i5cxbPFGwU80OFOmsMmSG3PuDXwQ3CH/BPbV7vkF11h+Ta3WQkvWGVjKkpUgyFWgmgAoBsrykd6ssJor7c1xHum95oLDHx9k5yneKoICYh7AjaSFHj70t+FQqu7JA7bTsBKoowRprW4s4SKsB6Gc5TBLE4+bwp8ayho/nMRPasQsAwTgqmRL9JXWSJ4Y96r7x8XQVBWKdqP96L49l44iXGtDOPcdkBR35mGcSlPO8+Ber/YrKHqmh6tRDlDI6t1Vo2/4ObVSDo6HLUt0tW8pMVxNsLSeAPzXde74L/jFk9e5wNZdBZRoOsasKcZ4Hl8JFkvQw7p561AYNqjhZrNfAXmFPUPhBY+A5xFqcVJb6BdQvL4teWiaSDtLhx7EgyLwcJY3MWjphtszzaIh0qJM2/y7L0SHR5yxzp/x5PyRVf1j5AydhmCTrXwkd5eyOQ7N5dz1DL+FH2QsB2fxjaPOLeCAIMLlgnlSyOGM0VoOE5oQeC0+R3bEdqrm7FNtP90YJCugPLSxSS6kNJYChHjdueQJnSb7b92pZyVvdsxEG8+bO45F/onxSSRuSkzUP0FN2LbkXnBV2lDoYjcuhIcvlU1iBGpCD9xmwqHX1faB2nAgxU69l4OyOuDj0bMlzHRoBJfijcJNLjUKFEvZQ3twnxp/y3fdPWr13UCvdnT62b+uptrAKioXA7U09mU1K5pQ219Vec2paRIM09puIZhoDiRnb2Vt6S/ed9tPbwtW45vUEEkf5U3e+aNJcJNBQfkLISP++YgsJckOw+hpEAWjEvOjNQzjS8EM4CK5AusMzkZcYs/Ma7B02/Sn9NvMcY5vfUmBQOBkfkxdwyj205sPiMOl5Xxp9UZXr2nintOuB+qYik2N2UMY/G7Q7V4dvH9tAMHdAyRfPe4xuUmzRfF+8jUG5TahRkxPvjxUYPcWK+1XTfW0s8CnJRXUd55aBrbNvKn+s/Pf0c3aCZGSYPom7FAt4MMzV/vPW0ClJ7iF3dVfKldikXlAYdv+qXNNdeIcqtzAiuOiEG5dvYJLLYQIUEcgozPcKE61cIUGQv4PjnDIxg3voD7XnU1bDKWaPR6nK6ygukCs0hYlMTpKhM33Pbk+LiB9junHnfIdw45G97yalMFXzWoaoW94y/z+NLe55RNXL4wqhqPtVgmMH3GQkO6WP5P+KlY1NLtQM/N8M0XcUiGjtfITqnasQfpOBIaufhU/p09fth6gJArxB9H3LffkoRnBD+Z+dCZe9xP228Jo70AcVNZpwDYHF8dr9Gr5PGPekoO0XUcVpYjiy4i3yeMorKxOsUbveGPD8CMHNYPJ268DJSmssrwRfLwNo2pqP8v6KAliVHW5E1DKTyt1VqTtxSPjnp+S8dqj/7rFnpln/lWDszl158lidsV0FyJ4T20yX2fRHki0HSzpuLiBGUlMRodQRxu7V4kXUxwLt6DEGQ3pWPdpXTBpDcwZ5dXhHP2RtSY2THZ9lWbfFjMJqfzbVxDNkksIYer6DbKKUdjeheksXqO1u6cjk/lIprOfrD60tvbXO72Ok3T4d61qs3DmKFVogOuCAPBDMYT4tO6OrEjITncdPAYymbe+29y9iAKfeJ1LrMxVnvlGuVzjIQl5ZcAuFJFJINy0ZDkh6fI5CqGZa5lvH+73Nm/9558+Be3ag2aO2NWju04ISLxPTK3HyBd3os6NpIk8zf2WyXhsum3e79pE8vExX355oM7rLFGcYuKG0ISMFqWjsytnatefesRE6J5Auu0ScmGnWNZhDChMGIDQK7vHQ6UFp2bRiewaQfpydRGQHALdbBxyUxZORpOBxkyzzmtX6szI968JrySwBbsgErWYdbDscN4uK7HAXCM3UnPoMoqQp8EUwYHTdudB46mbZ5DXdNM58fw8C34j1vqptUwVABmZNwoEp/tva3YWcLwYVAO2iFXa1D8ZUZbodVEn7bcnymRqVlNpCsEwkoB2nuBsg7yEtUJBXHv+owcZvXbTf3o5Wf3S4w6aNMdtVWd4nHHG3t2+3SU+mum4l4s4+3RrhpDCo+gaeeO8LSx0WIu3Sq3kCuu9YQv76hsGGqIPX/ksazehmAhoQj0lbeOpDYjd3LHvN58SxBWSNPFuSNhauU8t1b+Bd66TFTyMj+PgOLKL3HMvtGcYPes4EpD6Tx/wWF72NsbXg14/UZ0XPxcnEYN8cRSn1Q9ts60I4tOb5GJi3KI/K74JwggG0PdS45GDTFmQOX54R1KnbKh7NU8ULbNFTZWeE1IOtpa10emy6veueMNiYPpGV2EYeNxEf5/+E148g3it0rXkTcJWnFoCKHyrq02eufXFO+sq+Ogxx1+KVti8mbYVXL7krrqULGgM9Iz9CyJKxi8f/AzS4UkhL0fc7IwUeZCJtBstvm1Sa7wf8JqkmveQyQ22HgMbrZenGwWUBMQLDKmAoWAwrGwaN3tOSfxydS21ZMsq0GJvYPNUI4c/XfFWNxVXt3P1pc1fEEr1Wv293PuAPfo2Mq1Y2SBn/EycX+hjFzg9Hd9hnA/uOF3Pmq0hWvG4dFLlwfg/9ydF++T/81ClXxgr20T1NXs9pyOoSSuEe8ZU2UeybODjDwUgP7hlZp/zDODPvpAiQX+b/trpAFINEZTVfKSPe8IJbFMiMaLTVRgiVl9BGE3Wr985oCIacTIi4mrEC6vzxbIgqn0JWks7lJ5nuRZm5L2203MqLlknEujDgSXcoY3zcAjCCqNAYVTOof/qochpdiQ5p0zuHkWoJrOJJbuxdsQ3BXeEm0gcz0a6Be3sk1BCCwycTV8rZi8RRT9e6Py0S9MGe8sWG9op23bTSBgzA9KQoVSjj3H3KoN+gjGuVYCuSMyNJXopbjeDIGmOKKwMbkR9Im3WKFIZXp6ZmcYesV0H08N5gSyngVJw5frc6N7EYRoul+5KE3OAqmJPIHp7tFuW9/afYJ9yR0NFK39NhhuSgDpH5wf80flLRZW+HhBrXJTH57TZimXRene0w3bKvBoBwslUUl6qCy7Yc15bkSsNMuKBMAiNFANxKZr8r1zOUd8elwu07AwsBAC0bvDiSgyLXdgx3oSB8Rybd42u2DsJ5xAEWSqCCy9JDTvhmYUbMDwgvSvMjNtpLwPHcOBk7r+cJNdXFzS+c21BCWDA6zwAqipOZKIp2QeJK39lJrShE3+QnyXo4Bc2OWIQcWLo6KAKg3BC6X46gXVixUGi2nS4o5W41YvOvavlW7UoMxX2hef+kFGe80TZOQNEHu7u/i78uluwuCIDz32GmTHFuSxo/9eczZRtJ/vPSep/OKZowQvdGpmyo8Fcpd1HBRyWQz9LTCU9ewA8ouuAn6eXKT9V6uZWFtwMzoBBqjjIBX2zyFWWI9DNk++MzecE/Je9Rwe47mEBdM92lfo1eGq99VWF+XL+c/C6p4iupweKIFIi9QmXvAv11dxcLESCebVtFOUNqYLHXFkP4zPqf8o6ao5D3+uMSQGFWOg6SjH8T2X1ZZg5ZbYZQLApZoYl/edjFVEogLWsHOek34FKQ67nc2d6QfWmeYAypXsKpz513Tx1Djh5Od24KLuW5mHA9nVgQKy8O6K4SU56R21hqcQ+mHApWvgmG12aOk0eaRbReMHNeQMGO2OncV6OP6dBIMiFxbAFjayVodilKDZ+EfdepAYUBQrrEpt5F0nQX7QIJaw13hsgEoZoyF7jOhwXaQ5hntHIGCesXNU9oHsQSJI2s7VIAbmu1kTCHS7VeRG0mKR8mVZYsiwyXAXlAO1ajQR8Sakd5itwASurxhJTxoiFRmqCEjcQMSnrw1BbtO1FpkaSlY+HxG/E9a0Zc3kx51nAGUQcOFZ/EJGRyyaTNY/oOm1R9ck9WqTAyIGsPngEC576onxTlo7Nz5Yh2JToUgxVlnqVpc4sgpEb+W/eAifYJ2GkcIW0/N6UNSQyteugL+RVKn2wV5KAHm9SvPCVtmDMparaPtsPFy4er+GSkul6bO7wCgQmFMSl6WCzhU+W4PFZZ0w60VLeCMvyE3GobTUMDgFtfxOauTMySlDShDlMi3dxCMYkoNHr2NxdRM0KVZ93WQ1Yw2L771sMn0/9zgKrBD9AfcieCypg4MANlpB65IXqQJba+dhTyQaS9kFV+haOEC3GEoLrCqqeTsM91vZKTcDko/mzHaWmCKjrL3+1YjlOOYfsgwSPARSaRhQlFglTZf19nTkiEcly+F6r7ILfluUBU2+hXfIgWuHJR8aCOYOtssID0AfbbPOd8GQcsGxo/EixMqltJy+9oPHi/5aCZVuYpuN/EcrnoopnQLmB2WSyARMXMIwNA/KLARgIWMd6lB7nP7IVkNrnMR7TOoCt2/L6E8EBtIgbuQs2aEE5SRoT1xHYlK6Buj/08UkIQ7mOlk3gP8INLe7raXwHSPSAbM/PSirXC8zrXcsgXapWbFuzg9yjtvkj57BMByboqHkcRzC6a3HPLdFfjVwfeoVHGPsflicXfxUay5qq7Osw8iFANyfP9pzqadGk1pUXz3JeKO69WKz0DaEfnA6uwGGN2znLeYmX42qdC+9Na3V/BlPfGzQj0kn5T9Fk1I7VA42kJBltYxxkmBfcDVZO9zlsWuzOIWmCu91CFd0pVD04rz2lSpnHPJhn+Z6j2L8cDU8HYEaIBnP6ee/ZUeOIKzKT99uM/PVfQsHGHm1+Kj+Pjb/+KcH6elYMTpUjmEMb0Mnl4P2O1hO2TCdAksgwarUsGtQ5KrF7WEUWuZ11FXkW+ou7NAVNimHjm7ZxY5vvP+1pU1wnZbFtQDsRrOeJDpdd1jjrZPo/3XzNdGywmW2MItzJWrs0L11JHU7K1604J3ExM/9nzFIohlYIlt1IZUYUd/wXuXVU6s9JTYv+WmfaFKr6Yq1tFknHbHfcUZXsn9grQz/hsYIjUQIzZUpcl804QBfD2pKsQLVyIEE+YUd+GLqjtxiifAgOzWA65gilayU8r3CdyzGRbwNnTWOlrNIcnxAmHgCVwmsyNUE7/jw68qZ9tCrqTL0EHomlJhN2JN25+R62WgL+n9JsmeRBgUp0G1NQugc3Y7MEorVuktXPg+7kCvqmj+mQbDAizUD3vdpXvQnNbX34h88Rn6qpoHO2ubxAxp/sa8d1NmuhtmuHan4hcyuNCGXopj6dO7q+aEAsKcyxhfwhGvZMYV6tnP5UFVN8Ye4gm8fOCv1o5naDMEBClIJYH4Cqp56KKcqJRV0ag8d3g7EO1d9uFsPNXtjYWN7WVccP3W4ssPnxXjdrmmUQWjlhhVQYOBwgKTj1TEPzcRWKFZHLL1OUoRdo+QW+coLfq5qMeAKopGjb4gnevGpzpqYPrLeEDBtdi4sHyWozQQKtIE6RFCb1bwVmQO6ekONez28wI8AwF99xM+4/JGQ+R7dznQslvtVwswT4v2k9tbb9xye4XVrVtFVhJkjN34jNOO/bPhsvWDM0hpsg0eYlsRN5iyi3eQ0RtgGlqFdT4vr2X0P1HBs7YIiUVpr76BdbdAVVerIcqFrNnCFylPcQ3l9+9oOb9wFvBh1I0O7e4YSkwcxfSpe3Vn+Dqci/OUfYqhrOuElb95azcUSWejUZze1FWxCfFmI1TOdDLXmnqiSgx0pKYhTqHBETwAVHXoGa3tZdSXsRO2GxikyhCLDqN4XIMjetMK1zwNLe5ImDWK1OB0d0GQ+asxRIsQJZty2GzaPYejH2Eo841dlRzQ5F/2Vyemhy8nP1EqN2vdBGy1+BcXnlVB3Me4vLznWs6646EbdeBP+ERbOnGFXFu51pky5jfetbNIlnBZyc27xMUMKTKxQywVehWjOX4S2hnqREchFDB/t+lLYqCd1dTaKM7qWeyI4A5qxsXCEh8vfy9Ttf3FOvmoBYskFmEvWwCHoCYX4EpI2yMkU+BDsI4HMxX5AoKJuxTOu1/S3dSe0aWBw/T6l4OZkBCXp22WvRm93nvwwHdmPeXFLGJmfv/Sk0TgdXxyZU0b8WsqdLe97DN5gDlLIT+oRh6PhZ0TyTTUCWllxaw8wuAB71w9UDKbmcq91zDepwsAPPQuzPbVV7fRDaxym0/LJO+Zi46OqW1AYynzRb1PIBY7iZyc5wZauNwPzQ6asLIFOCHDL6wSc5uZSWqub5GF2VkknUhTTyqoOUj2bVzlupfJdycOUki8c6n1GX23CmUNLG5DtbvT5X3hnGvgvyDipufzGIyccFNtjgM2mz5g2bafdFg7/GduknASE5VZvvDOqPWJFaALzk68pR7OZROkTORu4N/8jEdtVkn9mquZfhJ5HzSCi2dSyBrPSO8tQWrqnxWvsJZJlmjl6KDLUHNMLvDSVuRt7Ydcndg3x9avcjfh8QO0pi4vsvvdNp2zXizytXtsEh0++kaAmJXGfwB6jOGH50pykBvPbw6W63gkY7svtrCxTBRrQgl0CXdTRkdNc/Lv+yp7HsPjv/CGJuDBlYCY0bkK/0XgPotfxhPLcO3CDyyuraXqs/WrULoeIe9k7wE/ZxN5qVNYmBv0s3MzC/qSBZHdPA5ugqv419iz91Jg7uElX4RBDa98Hj+qtThgRXTvYGmn+RATIQHineZCEHBpLUyIIAEzODifoHOEerdSwV72BiReDjdJncwv3D7nE9wOY/bKLPQnWk3DM7QCY+zY5YZIkaLhxEkkt0m/kKapbDiRBulMUqS2nKvlNVZL8EEVsUlCUm2DqbNdLR0SHDuLzSCfkMpRcGSfL+RhxmgEzymnWir2jhzK/NCmBSpmPMavmp80oU5McwLCY6XjlMj5rRchHnnHW4tF/lTqAUrxqH6aFYPQRi177NtsDHXtzpey1N4aaWtGUGIdfQztXSkjcFxkf4Wg0P5EtUQ7O/rqdkauq9827kdlrgce5gL3uR/NQEt6MVQQ2Gt1S1RfcL5VREYn1w50AFS3cCVgdUA46eqbCYodrzxsGOpLRB5qjNvR1xX8wcYNd7hD9EfuEiIY/S20KFkeX10hNvKrxG0IqEd9i6gRTG0qFr5lGcouAJg0Mwfw554aOn0Xrg0oZcKht8IOKhqclz6/uRBrzOjTqyyD+ObBGs1a0ePgCE6Q9Vaz8Vkr9x3oKRGmn/Vp4vuLdxuwYt77XtC+LvIvir/TGrsVWKs4jEsu1p/lO38YqLsrTnXnF9qMyYygps51Ua7GJzu2lmOQ8DOVw2jPpiN/QSs+6I5j500ffUnk7u5fiA83z/K5cWeb4RXKmNPUj8G7vXxnUQp0mn363MSBTHy3Zi84qtDq8QivuFrE2A3FOclTp4+6dUnZBNUdmheJwSoqvbEioEmWeuwjX90whS5C+x/WrAVwIxsT6oRJ99UHKbpOTu4EqmliGSoGWfU7K90PT+T/bOr0DZP29G9pCtEs09a91R1HwIxOyC2e+ek9SJFTWNTtKf2jUsUnAI4DvAOfuTlmZnV3s9J64nz7KZnRf5h9ThQ8BWbtG/uALEx5byac95S9/Mv8XbZLFPFC5pfy45sKlZWCNTQ8u241PT5vr2SCXaE+nd3/k3TwUc8CMG2olzpqIHR7v1qey8vdDF2uJdf4LfplLVGPwg9uRaCG8YRLRy3P7G9Zv0aUk0sfnY2aKqaLsjzGGswVD7MUqSujijuOdgJWkn+jwQKwM7Fj+Zbpg7Jvzcttl1OLcZcoZmsJAPud66xkNkmSDus8wM6Np8s3NXlxPTro2QhLc/iAUhFVTSMUOvOtXxWgldzLT4HAe/GTo84Iln8ESj/en8X6l8JVamEp38k2JfILaZt5yB28uuh3bgTt7kG3v355CZZ+JsDt+k6LXhlNTLcXE6/AiyfINHQheo7LEWlB2fj31N+ysGiJxfxl6Lt7+XeJhfcAK+2zRgN1TAHUgzUFfgMElWU7uloKlvcoPS0rC87WEtsw4XxdKORqe7ckkDU3B7ZhdVVv6OZU2sR2jOeJeXQGxfuKViD3uenJpbJ7o5rv4LMXmXGdk1yoDyMaEoSshUmz12h4olu79JJ45qROw1LBcZItU1I0oxQha+wuwTLJdJa1I/bdzoZVlOy68G4o9wocZcjItCeB2KIVJqcZ/AhUEisrsDWpZYbGFa+/srbBHWbLAR0XqmdrBhcgILtQzHdRQTeW2ayeePgeUKZe8i6vdsSKBVnlhYdrZGqXtORJrW79FEwaSSSpldnb39FPXixJQHRIGsvPfXJQA5fBp4XaJDfpzNlagTATU+DAvozCDa1GCqjCE3fJTcotzn166JUjIqvVlYY+fZ5Lso/bxjr4T2F7sc7iveuSI2XZPIFpSJ2g5LdHb7GgbWyuSErPVPIZ/DVqHAIg/o+Fts+ySzbXSr9+dPhkSKwg4W/DZh/UCXPVmcOvjE63w2u41ivTbRWNBZX9KUSwaQT+LZiEIHxcEabhDeXhhIfTYfUQ+90jnpVtez0XbwA1NQxZmFoVjTHBQX+qObu4nVZHBUBxDjLpEfIx59ig3huH5RxNqf9hsNg4a6JIU00gKsB9Ettl3qIgW97q/ZXrBULxR/XkSfKSNrs81YzB+47vJ3Frni0m2CDHJGzbysikUasn0cyyu/T8oZlAFV80APOEnwmocAoz1bh46RdzoLldCYjQb4I1MxDRew+Y47bCOeOWo13BT0FSr3e/brxAVRudqDCJggNrYeJg3YdrqWGoSfJUQVDNLYRJH7MnvLzr0Je5AE3idSKJPla7K+IV7S+cT8aojYIC98eH8eswpiMC+pwrgHsfhTOdSQouoeoDIN9RbbJy7sybZ1k1Wxc+TuwHX/j3nRWl821Hq3o7isKXuosibilj7Qix5RDvdzJND764Xl3Ourka9bKoGECSu1/PmRgXrryCbEoqRYaqtfQu1fBCCJmxrirMU+YflZGR/Bk0xx8kLRLS/AYBmdWKnC0O8fr5a8LXUiXgjpFAypWrr5BYOdCWeH1uLruLjC8JRVstnmd6F0cll0L9DB00Z16evBz6pf4jfSgJ6eksEZbs75dI839hK8/4+hbXY/u77b/5xfipbEkjTa4PI07FetdKNoRUgcOkkSn4T39UiJ3l7qzeW7zNcUvUCRzQPR2neFEG3MOARfkxWeTyZmgqwkNLncUJ3fLUyzTjSqjIkStPuY1fN1CRP/Uel0TIN2VjjTi4O2GDEH17rS4h48aNdPuqZ0AbuC4fZTAiqtPJ0EZljQVAKBivQWkYVXqYjnDrJJFqqDNVXRvpPo49YUfbbEq0VkMZ9l+v46h2ChNW3pJtS5yfAqr+CahBas7RQ1aOyjblr3FdPppPeMOo9ieWf9mWR+MHxzzJhVHb/P+Yu4JbYNpm6KUnSPDvzFMfokN27cPVxt/PRvYp1uqjKY0wv3OQCMzvGwHiZebS/Ilgt21338WRZY+Fw/LFu79IvYdwAxULjN56CchUYmmwqRHyAGh/7JX9nkxM5mZJC1OaYhlUP3M9S8k+eubcXifJhIwJMTrqrlLN4OhqhPS4AxaBqvY42GAbGsyPf6wWJVQKoM9US4HcCswew0UsRHA52mQqgCqe4CV/quhmhLw9dlU3YA/o2P7vd3VEeDZzPPQf14Vvsr9PACuQaVF/m/X+esDMqMieCG4ogD5c/ksoHRhM9gvbis7dzrlBDX57T7mj3bu6N76cFZxV2T3XJWSNYfpmECwu81spPJ46qYTPUvPzlDgX1UBGsg/REGJlfVlOggPmlxBlWUOeH1whkShlXB5h6/8SbJ4fRNVLX37buHKsLvuSnF9gUSVf5qoUFOvWxigLpaHBGqSWyNqFfnE47WTBRsRrYtK3AOcf9vwuzNeDqSkSse8bCVB3LVM0lfsU3d7Wpj8HvcZIYw7thjvZzW/p5viuP9X+032zFZr+ocBVtnQGTdKDmoJmd9bz/Jh1fPoYaGz5zeTgPwDF/5U0Z2SJwMga2edR5Wnb33klyB6HNxPujy8u7aqZpZZDhBQFN4YCwT7J2rPbXX/anTeka4SKLn/VVkk7Tv7TYuEI+o6XiyYJDtHc5CkH34aIvtgMwmCxkSna566SWCIF6wrZw5yHY0gnvi1mU1DsvTIkYAIuEFdPZf1j26Mm5Pif2hZcMq289FrsSJZQCni48XZ61iFCFvSmf4CEph2fAtpuZZ1kYWIpSrFSSHMnPMXYdfEr4TVCmwbHM5z83fv5M1VJPQw8LvmMi9MsfdTO5qUomT6ftWID/oj+8d3Nglfn1Noz5gcCPQROeNnQoJg8tAZAvURDNKTlnmFqwglcSfhajSmGVrcYulYnNkR/Nzb/dBpqlJl0GMe57tV8KYTt2OoS6b7UOYtSmvvt8WnuY0Z9YvnUv/ymMMAeA1UdzEdChMVVUSlju6pY9JiAiYXsMoIR3ZuIF1INmMEneQkZypOThAPvM4X5Zf4e5Kfi3lVWaYsdhiN1+GW5xBvcOWJPJTDJ2Dy3ZP5W1ffG74B11e3LEZ3IEf3f3NfeSzOeiJhsk+SQGzaIdtSYNJ3Fv3mP8Xx7iItcQqJUxNeUMjjUgikMyYLDaT4e35gKU7zG8fwwjUozgHQo7vgDkiOwoxiYdSfBOkcCholTMAUwTT8pMD0nRkdFpNEgf51pPsLs5NStwdahNSfTLVDbEP5vOWNw5Xlll6ii5V5V+7HeMVBqIzMtpB3Gbj2hQ6zrb9VxpeZGLwjcrE9ZHjtYSQurR88Yyv3HklSwvFq5iz8/AWy+zh9YaIegdm3hoivFPtZKsUE2RMCXIttNLmmYOyMT9DaiCVXVdNR+8fB8WpL3CaJJdpFJMNII6/0RTZMRAQQflVtx8W6EG4ras+egryoDNXo8SbYv/41HbA7hfHKJeEUlKnXuSFykDE9M+qlVbRp2OmEMsxiKLzDVLJqJFjfs+u8yvluhwpsFMgm2thAyoMmfq0JuM/w1AW6SoYwzcL4lEo7gLY7Yv6rIbRjFmLy8piMjq44nmJ67vnn5wsyrNAjCOyLh0/Zg0+Z8OtOji2ZqIQaT6E3BYav3+zX7L6owwg2+ZKRsKGZqGR12CekYIrFt5HFgpjE0uBtV2K0l+qJ/NuYz/oj8Dtwwol2gCNbo+/ADa6jvPIE34RxL2bgCM0A6wAAAA:image/webp;base64,UklGRuJOAABXRUJQVlA4INZOAACwEAGdASrmAJABPikQh0MhoQjsMzAMAUJZ2wt7anoQ8eMIPk0+xJ5j/X/lr7RfM/dN7Q8Y/H7Ze9NZP/SB+x/wH5R/OL/d/832ofpL/je4X+mX+c/vH7qf4D6Mf839sffh/Zf93/w/YP/PP6z/x/8V71P/M/Xb3d/679o/cG/tv+R61b0F/4z/jfTK/bP4Yv24/a34Hf5t/jv/TqZ/0XyD/Pf5P/Vflp5++fr4l/C/5f/cfvZ/nfvE/e/9DxFdb+aP84/C37j/C/uH+WH31/tf/D4a/NDUL/Jv6F/qP7j+0/5h/Xl93+0PfLbX/wP2t9hH2n+4f8D8wv8z8Sf2f/l/zP7Ae+H2n/8nuB/zv+0/8f8tP30+xP+t4c35L/newH/Q/73/1f83+4f+o+WP/s/2n5d+9r6w/8H+m/eX/P/Yh/PP7X/t/8X+5v+a////O+9/2o/uB/9Pdq/YD/sFqQE1pEolACKzZX2l2j4d+DPqZMnDQiMU9t3A5qGwgHL+cdCjaVUtw0x9E4Hr0KvMiyL88ZhVzW8hU8PRuTWbrBrLdYM3F1HRXCW0BsJ4+Ks/d4gab5ITBYZ8BgDeekvVjn3Sa/21GRqp1UjOb1oAo6yR0PrRq4qE6rv6EJm9OZhdvRlrm1xUPlFPV2N+j8+YCEESZ81yU2ZMHV6B5XGou3a5GDTObOTeSz1NQr9wqV2sr5np9ASLdpLMswwwDaH0Eb+QxCJpK8wBup5nBLOVBB5xSJtOfHZRiiIyAQZaUdSxonK5dYNCk2ESnMOnF5CpnNxdPq+vvu57x/U9sCRQH4NYiQQEO9e6mq54f613lJ/apBpzy4FAWFulUJcV/YbBF35ugfaJZS7L9u2HbIoOLQDwYxsNa1juHlYX63A9QnLUNCIyRzCqDpZ+UoF0vHm+FjZIiWLRu9taEUaK4LgIwAp9HUthZkr4tCEx4X5g2SyGqcOmVj19Xalb47+X137bkPRH4ro5hkFBQ/U8/jgaBLskatc9g4guAI9+NvS1VOZ1t7W1hZpssGav6asaBhX9LUn5HkQB+knAH0k80lvRbujo7hNg6nRxq2QcoXbrd2OU3Pq7k9IrCjR7ahx4dSHTRP5vLsNTUipFx+AJKIGoRAmJBxFBH7UlFu7qx2oYkZ4iw1Dx+ij2zLScQUW+GOxRAQv69hn1+b4kX0YVBQhJ/sWEkHeHE7tuvUwNuzqHbei6SBhialoB38mvO2g+XM5hO0YhfssYTqHmHw9W0j1mUmHXt9T2QaYA/tiPPgkqpfMwKPNIU5FXHct1MLrZ7AvzxV/chUsU1nQehznFg/HrvPfJ/qTV7mS2JYjUizz7dRyaXQzH0qahtW/U451a7u+gZFy5YMs6/E6nKBpQchS36SreXGac6/2cafKg5dOW8nPfcdQQtgk2ulk5oC6fgQ0mAL9a/rf97NJPyzQhCOz0o/TwauVLMRQWzxqX9sPW7iWqF2ysjTWlCIiiGnXXm/zC35S7Sjto/HIAVo9n9u4NW5dV9BzUHWFXmuk6mBn/MqqjlyfuZruDsVQy4VWOZPfjcfCXRu432COFKR5oS8VlYh8pC2ZdD7YsI7joZ95dQQ6mPPWB5Mep12tWZXWq1ZYRVJu/ecnr7VM6CW3Wg+C2fNcqJ0LS2dV6cndg8x6VPfHplrtkvP8NMvucP+nLjgUMC77kqzEXIDRLx12QLa+L5TSQl7hAKFtXwjqqAix8v153vbWaZMGX5/e1eQi+iE9NjV7DdxwjUuK1D6PEgEwVTSxK/hY+QHOLKKWjH+eR6ajyBeSvpob4x5a/HIhJ4a1J2/L3RjpZy8M0y56U/LwWnvrqLLDXnV660XMx/wJu9uSk6J3MxoJ2g8OMUJjT+F7AqSXwDnw1d1Zs+4tOKHGN+DR+FByKQqDRpSKTFTGbawNPdVhjvSg3FzZFz2HNGYTKyrea+bp+0YerFZ6kZM+OUukwXhlfmWaAUZd1DCdNTwipduaIvJbHcUSNQ4Cq88PtkH6gboSdBlSfxLSYiodyr566zjlsU+tIb01CKARmdv+orlI41q4mPfZoaW4heVK8tsrY/rGZdt7swdLqnqqXrj+Tpj/6V9gaA1gFjNKAgb3uibx54+cmFEpgQpffIGHELBnYVeEHp3HRg4FJitEJv17oz5PTi3vy12Tmv2KRUHvUuLoKPASxPidO/MtYutNu5y74vVm/cI6I5V4oN5nha04zWv23A3g4WwGhl+sPoOwQCuo6jlf3dUd/adNEWD0lx0RBJRNV1LOF0PAh3/jyVkMSpQgLHbEIJNJmPdTxUPRe39kevvUUGhm/8c6QNR0hLSsuzTB56/yqpkDMOcm+IYEFaHWlBMU1EdLveloqzTGVYMM+mTlSFlW3kvsvd8uqylrb7mcTRealLRnecnmusBJU/oI6VuIC5CnUgy43MSOOYDiNKN1PJJF1thlXd9cPFw0vNJRSlYIHU8/9Z+xVbTN0JU0omhYYaEhc5Hy1buGf5ZuhSBqk4vwL9svgJ7zMGBP/Ov/OZBuee2KKhPGGJ3Zbq4jR0zN1uoqr5wgXr9PEHjfSEunkURc7PKCrmy8IM+mafuNu61eAuJcVX72irg3jt55DytooHBcvQkVtLFLNGcnM4qMn9si5WUrJiTREDYw3m9bdAthtQsbBuFnehoPvzYx4+wQq7+xMxZqydgJQ8Sq7WaOL19dJt7fqhs2ymNmZaeLmaHHJKqCgJWa9+72FUh2FRNukfTDtaKqA35kXLrJmmnDzI2jx7bul1uKy6BsZVsRICZw2S1Ph7BfMKLqoaOZ6fjIxvMlJQcXWd9oo0ktecXXIp0TEB9r2RtPofvdfTeLLTcaHXdZlcVepl0VLA6/dD72Lc79E6p9cij0Q7s6Q0iCkLTD3CmXh//rnKBLcdca4WISTL5b09baH1MAA/v/r89YrH81k3/lZ//2HXonRrA3doBtKUk/naSdkNpjew6pQ4meeH9G1APwfbwKYi815+CY6ta4/SlGZIaffiLIbQD2qHsULi1b6QHAV7gXEccQQvbrbtPQyt0q5JM7CLnPCxv6aui0HzxGbzpr8EnexNIFseQ4KiyzOl/ZEmS17nomJgRmMgx2kvY+Cass97U0fZQDMz1rqAaJjKbBylJ9wgjvAIYEu8DBXjfbkll3wSV3GnP5UJD//8MBdWy3qwDy3Pmj/yEjBZ9RCBhXPNXR6Vav6j5ejqODLdg/Vfw/CvNy1TZdKOwUcrM65sqvwLHUMQyxrJPW/SnvfHRylAydyD2mzNUc7SlcjM7rE5/a1aYcrdPMv0RfFiPW647yBONsj+OncnFrB9zYZXZpismllxjq4uVrBdTGbFkHBDiMz72MkSa664zsrdMDwRdXTaLHWloJ3eWcSJjxSjWmc1K00twDBJySzQx1KgKLhtHBskh5AOvUby/t6PAHHWkRWlnI9zSVusrggQnjtpWyMtHUW1HqyvNjZ/xWcX9kaqYTobAxSdUL/AOWlMAwwRKiaNYiKKTHK8nVEf3gUyA453J1qxtM9S0AnhENyybpQAop8ABl4pNPMVcSqiCjRIAUVz5TA7ke3FQRSAo/1IdJ6IcQ0iyb/xa+fbGGMBGwmon56yIQmsq5llrDwfVaTfyFIJlGhDYagexu96nmEeaAr0+BSv7TbD7RlL+saPAX/cvd/wjORjEQNhsIYj+y1neqIOd7tFE8G7E8zQD5p2lW+Jc1pZgvIqxxxvM4y4n5BVpODGVbz+WkR+sR2TqXA1Ho2xGCGj4Tf+JCb8J6YB8ImyK0nSYI3NX8rEBpr/YQuNb59s/I8Rutd4sbZCaCNsE4Nt+Eep7Z+FfyajOXAN9qZ2qMTuGC4OCk2x61etQpEOB+yXQzFe0HfeawbrIrcSxEBu1MY3LmoUu+nF+MiP+F7NPKjR1IL1Wuzho8EsB7K25vAhZ/YCyYPH6xgCMjENw2xRfTBlIpuZ6tQ8xMU5k5hRPuXDk85arQNuvwPujs98ekPVpjlg1QbY0LZPjHnByrww5K9u2iLAGrGV1Vq5+BBgt34Ddy4Q/5/NAPkOFeq4sdp7VMka/kn9Kkjraid3OSkOQSZodrTW4ek1hEWo0xq2N3hEFStbDVmdSKXu9kfwN93bFQB736EVzsA/9v8rjQ8qFPr9ZEk/vq5yb0a7vHcRaEp7y58kaLHqJoIhQuYq6KLmLVKzRjdr3/7nPfPmLgA7BIv/2UE3iScAtmkcG2BJvQWzydf3A9PiOfUOe6H1rdngw1SB9MtWkoSGBsz3USutoZKJ1vTCaWFEtVEdU1Ertbb/INL4QPq7MBbw0hHjkaor9FlD/az7kYxK3M3l3Ifqen9HyQy+yeucRD8YOwAisZyWFirQNVg0RHzRq55R6oEg3VzzLSu6X4fU8pw/4ZlBLthyf+DFSBizBXkP6bdbirb7/+XWcgkHl0TM5SxyKsf0A3NFD3uIVeeACXRaSM0LkoWGhuo9/A698/4rLYYDsTvUnbUeZhyTwit0iLnqfx+SPpjbwPFOdfzPyPfpCc/fsRvALsNtcw9A0dMv+lJUrNBF8JxYn21M//9UtJOqPVgV0ddMM3/nfh8PEx1zB4Og70Ip+i/h5cz/m5WWQONmiiRgt6F1ezg190llLuRH/+gSooXyN734/bhAaqIZoc9R1eJKhuV4anvIJDMktLot+4RMULzaS3DDY1vC76j8dJH75WntI1y3F7cB6qhBfVGBHuHjp4A9jdHabJOdZxpDzkk0zQM2WV+gk5J/7RolqqV4QzwbC4sS1JDacu/ZUwCbO+FFvhJQxUyq890KSfRJ9pXr9+O6A+k7RHc2Td1k7wOg9H8JFqogvGaJ4CehATvw3Z+hy78n35WkrHkJLpufcDmQ6RoKsshlzrLyQzmaLh+e59W3Z4Z7rm66DWDO2v/LqCasCtu96/JzUU9OI41I7PkSV9GMYkxPL+tOu668NaknXgAl2weX9rffH2CSxJomJfGngZm3zRTtdjGp93ogoVZss+LuwSoD5dOJPAnh+9emGsPR1dEaVx579T1ORLosvtl8A9Yjj5mef2u8ANeRKUmmUqysb3mIK7tmb0xkNrWolyO8kmKBfFHqDw5oR6+pHANIZlFs1x8eVXeFs74J2LAsMyK7kS/aRB+mSqpuVHgQgR9d/U02e0EOUN33jUtgTkoLNWG11nXbyeY1dQyVOQZwvFjooZfgM4CiNwR3h8BwNxFaQ/DwVAm+xrDYLro8XCVD7taAz6ZMh3L85aMw4fZOROc0PsKbSeFYwkWnJ6Ir0NLPj9lVhK6FqtKplWgoExLDWSlQ1Zf5lfc+bGByvz8Daur4NpwSnYhFgFFFDScldyhyCwRWkJVN9xbf1X+2tEfl7DpRKk49S/HbbKZrQAV3FDGBW/vEYlHGFjLetjyUERL1Ymhuf+HE8HVZC3P1Zsg/ZTX1vCfpKiyQf6NuQmLDLc05y60hZ2craFTVPbRm4yQChLlBGU6TTTnoEGicirFdzIP/SsgMjrKMIFtdFdP8zs6M7XKGxwa6lRYtOVv+mLTCebvT/PVd2ITN0LbBL6uHE9Q9HzEXG+rBE13VrLbLyidU56ucGSh+bA9Sl2F3sTgMzB+PKBMMc7DckuDyhAYpnvmDS/m/+VaPLwEEwaRMhq8wJcttuet455lUWhbCZmLTzDjQNjfW9HL3gaPmcIOqRGhbmN5cbYJo4pziqlNZ7XIzjTIf8T9XIN6CKNzplRmrLVDZWBTQfVk+znqVmBbHfbaVdbmLaKetv3JVb9/dhKqdz3qXygNWh7Azx1i0ZBQh9mqTNOBDOGJG8EE1Ul0z6O61soVdTAhu4qGMsYXCwnSMBYR+wg16fbCoFA5dAWCdcRTUM0sB1X+D9tXDVSaTDeSQ0OUy1+1eCqIywJ5SRipy3BmwJ2zowLQMjf+VZjAB+CR5DdWmpedqR9aWd3jIxlfeg9v2jFyGOdGVDNW32be/baFa2mjYP6SA/XfjsuXKFVP6FM01QHx/3QXvnGL9zq6NmC5lPyYVQCgJ/qqUZVX15kvyZ95PyZfZidlZq7Ksx8MoccrsxwpOJX9fP+nH+TgwRZyFGB4WmfmQ7YU/NJ0XRlz4mYjozvPkqjOn6qMz1Ef7J0bM5A4NWX/DzmBOlv8S+YIehqcYnFB8yAsakO/b1hkAWzg/j1B5p1BA7Gn2/p+Zyxt+OA5770FJEUC7qviNgCAOTbX9eFxIFtMEppqjcz6FD6i8/kj779bQyGxpsRoPeL3D5y40aMNmCb+ukB0E04doQWGadLkkP5FUQFNK1PWrVuNmCuTfj3ublLnklO9JXvKotGq8Iu/1iTZgKpP8D3XIHuyOwvcnyBI6vTQu2eaWSDFqPCdNrwIfUwwEDmAKi38iSok47/we1+nsWy1EBtDZ7WfNVES2hI3K9pr7m+gjJBVfte9TswOeuCLhlxrGLiNddKfaKKHSDRuK5vzDmZc9v2l0ueTkqBsx/Gz2nxurctugAYKvgfgA0L4e4JhpuBgTlQsAPE/GF1eCR50VhXzV3LwBiF6QabO+H8jVR2gp2C+T3lERJjTjuQyUQcTr4u0lid4W2iI5KOzkaHkS7OADYDTmSpr2D/aWPe619UAOea9TkcHnwzbm3E/qBAKLRb9OymXZSA+1tMVAsm+6Zwm6kaD20rdjGdhVKucVQ9+L7TrnyU6EK4/zALXgckVU9zEmM0nTQ5kBqaG5VpY4yCTiyB/ecpofAu3aFzE5X58f03qwp76HdnWsckgAq1mtqP++cdr+AvWo4ekPCsndKL/BtmTTkU10lsd2eHXKNaXE393oAUkoKCOAZnx5muXFJ/IB/Pmw1gKyy95XLPA/mNcJEwFVFU6edTpro+H4ZGrJ6UVHxNnPKEKXhp0u0gjnhwQ5DwPMsmdQeVNn7IiGOmrWqYHK/Zm0tcJE+85oKwO+s0c5g6536YqCIl7f7/NwJrVwDwvIZSrfZmv4RXwqLX6xwrB5QYeJ4gIPsMo0FovWyP3zwzT+rmHAnxKQQE0PGDblf5np6ZMajHgeNfWxMg8w4hmPq3yOmd/aqxkMXehKA9/Upsce467DTMlqbIGgl/oXfLGfuAqxXFsio/57b00+Xb86yQ1usw9nVZfxiqA77WhEUUiemMsf8b5wqp3wZFVD7fovCMIQpCt/OlZf9ulROehoVCautVM3Wr4ZLu7magOT11TlXAl7EP84v2x0HrKbCrsL0GeXemwJmyfzsaBXi0x5R/fo0/m1WtL1Zflxg48y0BcT2dg50EMD5t9XK+KRGgyQb6ZLc/4sD0qKs+2oDuHakw7FYTQ0vGKTjsw2ejUFS9gSajU6SgXH4mpACnuQNsoMy5MPmZn2Q0tyWSSIn3cmePKWTfN/So3kXLUgr9MNJb1elucfieNZlRbZX94iXp/I4ZdW+Uv3ji+RF9wrNGR9yTXJLJTT3F4QTKHNNkSAY3SIbsvgOImkrpIdofQJvXcXDSXy/BvM7iRWjoR+bXkks9L+esmIxVnAsIfJuAgCwxie7sBDCp8QEF8OoEAz4s+NZj/AYhy0NLOv9rMXXO2vrIrXZc/i+ki8l5eOtUYm76kJtK15fohi2+bphFyIRvzsQf6affT9nMY1X73CNNnx42r0lo8Ea/5BvzXpEbHpQvpvKdTKNa1D7oEh/JiVj/9PXmbvHAtZx4SsvlNmYWvtZ2Q7bZzbbY0AX0lsQdctgWoea2HIGsrDcGy91DoIECiW4Q/Ndx1/Gief8SGHpo/4jQvx+S1bwYGffCMxxNYmf677slddX1ooxt1DpZGPEoD8Rt3yJ1fAKM5jY6h+RQ/3AXNmJAUHOT/bIPLymjO9KaEvcKy53YjM2R+boG4G7/iI99yBLf91o12+TAuFvWIN9ijyGial6Hta95HQX1bHGNeOVLiWoN5aRpmOFBk+x1Yh+/rxCHZG+CRgAPVfLit0SX+LwwFIB9lpsvEfqn6gqg5l44cFZVL2a1Uqq8y2LLKzpCgcvBfKNNDLDX3kldP3jx0zGIj0nt5wUPZOwfWVy2T6YOVtm3IxiVzhPWpXpEafa/9V1H7O0gsn+ElnMiSCP0JLHrQTrJJpriIm+fMDfqwB0EnDuuVd7Qr25mO0ahx/CbI9qXKw8IcY+z5KFva23Env+39AHS7GVqtRbgKH3OCxw7lLpktXNuliz0fb1+dm5foLzFA3iKmzlLU04TouYnMX6Eyu+GlWMieb69HKwvyiilkL8tZ9fYa/zrwnYVNnxZIFKGn4yWhSODmeyew+HscjXTUKLCKY4htZTaDsrigS2fuomgHm9EIWQgCwwlis0XsECg1AAZ6BDXKRRVfKP0Sj8L/Eh5rhwgYWw8VaPPQXGNBIeWg34PARUVivmdZa+pNCupowNr3bjo/yC9iS3WAWMRkPnbw7BbrfqOwRKWQmA6fKntIlyC4WO+ZWlxlMKr7rcScqlV9BWJcY2tzEYRtGEb32Cw5IGj5fI6IstQiZ4ZuRT0m7YPjycx037bG4oqnLe4Qt0AdcFNUDTwuPy2keQZrGvD11+6Pantp/Pb8d2haIbGipaQEIs0G+s+DdqewTMb2DImxQ2db2AI4Cu0oFUTQhaIsNf0eFwK40dRzMQxNxg19iOC+cuEnf9ziJ0o1ISjGj7Sbf+QcYzKHICjQ4HOBZa1iWbgcXoNivK88/TRBkZG+viKf+fv03v5q/gwDqAwW6Vpng2taUgDo+ITBMuIfsGiQuUAMipqhLZmRUD7ob6oSPAGnROPehrlCtysM//rb8enMOk3XFbxNg+PgPB9MwmQf4wHX7xgDPwqPbH9j2lRave4ieiCamS5D6TnC2sT++HKwxl9e44weyW2cgz4XjVad31TtzM2oqEDOTt6Zg/qpqAEdt6bNoS/htGggGkuWi5eWMjS1X/7gElP420dqOddVB21iiDwTscqz8SG8BITXKaYzEVgMVlyHsZUrklWhJvqhP3xAhlppDqTyD7mexgatlOWxgup9/QivBZqmekZVxqIO7lGvlEB+tnH7ol08VAWTOwTD4RF4tH7YbAPvsZhs55N9R9Jz6387mCb+4pDyz3u7dJ/lmFjB8uwKGowRK3htncIfFL5fyro6ju9iNfSRxIYbTe6vuvnjw9uVEC59EYiH7r3EyMjPh4XSlcwppPxhBHT+dVHSgCt8/1Pr1GDFBINinamhNrHrsa92yq0JU2PoHcLe2z0G9hFthzM/VXs8+xBP35ux9/xOXVxtwIg3NPsxbZcsBFURGwOoqE6eKjE3mwAoEsHyuHb4e/qrpX6IP8TvVCA/TcvxxXesNXRa8RbigX7LIAU3l8y/1PHmjtgRjqJ4Hd70bJC4hcjbJOYzGC26mksPAiX3paAh8jPuVIzjsI957HZsAqE9kDM9jbLxmyJR5FCgsCD4nZiv+uLaBnHF9NqUI2JdIoY4nqOQr6ZqNSCYo202bwV84dMyO2NEaZyBYP9vBnpoSpReZCYTRNyGKzLjrA6Nh/UnGkhWtrrXz77vAAlhRVDF8F/lwK+ZYuiKM88vkHSLe8U16AleQAnLjj9+uh9RucYJCSHroSgDAf7e6s+XsFX9Z6TAaxInUopZVUm4RZ4VvB0k6jsJj7ZSo6aURbl3kB3wZeOZq9ZZ+kUtmSMok+E9GPDpkeAZBIb6wB4WiiyfOlfRT2LILHxiROetsbSwapGoXaCAuwsTPxUIk4Dx5XqQoP0K9a+SZyYmlsBIYDW93xhOBgVzJB2c9+V3h7vmnOCWBw9nxiZs7TdOpQtuEfLS/X61bzh3WpdmE4pmRrm1/X4w9EfCi098MDsckRfqtdJ0qiCThB03w4m67deOFwcIu1sCXXP4p1cK6P/PDTi4csVGUv9auoRdwMvJFEF4d30eCKq73NQh7PnAwb2COdVCQ+Icf+oRUBBnp5b8kTtK3PWN7xyyMaGNsAcmeL2/8szvRECPQxAolo1a/hGVcPki5rT9G8TstI7nc6QzYnmNtR4Q9+O/5EAox5fn2ivLXZcXj2GL2+7OjsHR1Irm71MA/tG3Ghy7Stft8fjIb12lZ2ezvtvfE5KRojNtCRupoEUZvljqQJPdNehZ8aXD/nU7fmV9ladzxYhTpQfhrLCGtgxrBPsHGhWzsgD4ITzUAWBVcIA7a0VL/LhsQsqvYfDgY50M0TxNFarq9lFTuF45hIX9WjgzXGMbHF3EWAVwO4roO3fVf8u4rs0JKq6lcMwEFM80PIUq/YjwcqADQqwkVoUJzhEElgAK9gd1BdtLKTWTM1k8LFrpwktl/ReK4BFKi2ENOC6CMErhJblQ9hsRfFQXKGrQKRR1CI+sio5qFYtTSE6Y61b2EupGCN7PysC4etIMryfpgBC0lS1Qoy3qfPSZY7gF9NEA0bcOJPo/ZstFaDtzqzgXMqrBfZpkmF0rsm2PLJUNlQ/CDs9F+hufYHvOj3qTTokAAAoc9+KKPJ8xs8LXQLloAwNSoa64w6To2PxUQN7YuKYYYYcGyZxyGSAUsO/9mrN5YgvFBiCNvkwWbIRtE9wJGm7vI022/JzZd2nzBj95yriXFf32y7UdQn0G0BGbNf/hyAFkjzqCt9P75vHB8MK9aKhPhE2YODOGg7edaBcSvirZ+jYmuwZKvsl8Ts46flnQ1XZs+fk1vjhSR8S3dk0iaSA87Uowcxd+DJYTLF91XjZlG9/zksuCM8SmkXZtbml7yNnfa/wZMMZ2Xmk63fdrEJeDwWZS/5b8m0H5ZS8GUazlfzs8xUQKHAsQfCFl6aBDc9ZbvaemeDH0L/7vdHcaQuR9DokbxFgiAwZmzWL0VNdfIbFgmzDqw9sBr3eg3fwcylLBnxDS8EZ8xFAio1qCpPj/cY24nay7d+ptkZLhv0y4f6b7bTW4p3PzuipvTC5lSrobSwBl3dktZHHXyDhUizqsyBx2vhgJNPCT1tRAxzg4fDYC5TpkCTrcBbiZmuE1aNsA66MCU8+S++g4T+NTtAMgiqgIsL4qW+9U35Q9kSgJ3y8Y5pmMLwYEZM7IiulNruEbMcIKy8l66buHtHCY0ILrSz1uu++crrjd67XKWh4LpZF3M3p3waYm3+OM/qDGpcpMGqEJOXViyTJfedmbiPcx16xt0/TSLWE+3NAyzVCuR0py89AWacF7CvWOcNx3ecQ4OTASs6gT5/GeaUtFGieap7UeSRjGkXmCboErcYQtTPXf7Iw1SsTyrPg9z6vjcV0/6epWwmEtVqoocfgf1iunq8VIKVsw0K0a1U0maD4IVfQFd4jvyg/StOlK7i7Qg54yPrKWxIDfjD2cLGrrxqRO/s1+Hvx42du5Y5f9lrBUKBNNo+i1OX+q2bfTZeXYoMAqDSo219Yjfj5XYyxy1++MXJodCdnJPv1IL0sltrHJkqTciLUWGYf85SuuCp12yTdhTG2ePO2SU6DqWiJJT0XkZrEbu/NdT/fbRvv82vzO/xotZgDAMGZviwI8L/hFRxQKs3edIFT2PlZeOKwLxBdhPsWHDGvxqtG0eM0nt16yk8FFCWMi/Khgcq8XgoweW1bduUggjANgtuJF7frcvKd8zXUvcs6ozwPdAGQJRrkLjL251zgT4P8OPSpMD2Y1n4WA7p+dkfo2ne6HE+V5XNujth+NZOh3KTTayfPPqiZTS3G8Svtn5jYEZ3IZ1mfzKyV1hS72qM7n5teUXctWh5xkDzSTsb9QAv9W8wBYY+DP074wmI/XLgGi2rMFZ2s4tKVhbzITc2w4aNJPzRO9EqgtZp6Nn9eSne6KSotk0cuORjkPvQYDndZpwUwSvgCVLHtfmIp7MRqdTDt6h0Eb9eaLGuAZnP/lOtffoWcHjI2SyM7CSd/3RBJlwGK9rMqLppHymUa4rY7IBgtG3SsymuCzh3N3waaSYCbFaOQkRI+JG7mRwdXuztzJzIRBElBgSjJrJBtXII5Nd5I5ORQPs1TioBHwgyVddHq/8NX1g8ovE925S+W0Lae7tW/Bv4Bec3WBe2VUQiAPY8bjsqpcqCIlzNJNEhD+qO4tUel7XSngjHA3DBKg8pSztiG7xL5pGkQ8xQkEIDSYp4AeWnxWsBgK0H2xjE5tak1hdd2HxQKCXc+xqSjXqhKhqFkU/1Pb0FXTd8VmhCZ6gKA+QNV2Rwdiyv7Lf/dp/ktwwHXzKwq7c1MGp69fXAK0xp6jPt/SjybBThduIUJ4YrszLebZdCa0wJu41SzK9GSHMziGJP/h4P5roPRkCcWUYss/r4lkA0Bx24btg+4h7in+1iCDEi20p/W/ULFXuy3uGZi7U6FyNQtmjWE3cUr8FJCCFqwtr+6c/zMogpQ3i6Ek4a6yDcfQw5vKRsEYoQIZPdmIQmlqJhvL43wa3fQPE3WvJBHIAGdVuTVPnNGFt/fP62BERXvcn+/sE/b2ROHIyhyzUqmVK3ze2jdlbDFwhMvJKNfqUeJ87OZl/mclPedO8rkwdOMHH8rrdwPLDou81ASqB8Lc5H4m+KfZ6sstiC1Sr3JSrty3zQsXHNI/qE24clCNVXciJH/C+kXQUS7uLwBlE7XEUbU2krPd0YAZZgODYqcWJFVzr7xLga7nNYA2N7s8X99m0cmkYf/eu97qZtArbo/XhrmB56u1YXHac6li5jm4J5uByrF7CSpRPWbYnnKmYdukA9R8UtI/80ISSTyR9ih0za8AdFZO/j9WaD0U4klrdh1ONqvQfXGEg5gCYJ322Y4//VO/JbGqeKzsw/IiUkp4btzA9A2INfjuVC62JIRJx6Gxj27jNC/0X64ETIkk5bKmQynNMmSV7OseNHbFesditS+dY8Xmhs3/Gcqh83GfgXeV0+ZVDO9ZHU6zVOjk5ZdgVJ8fcwm2WMFMAAcGxHMiAhedHSsCSJ4GZI6xm9MkwXXvjRzBLHH6GUVxEgu8EQP2wpCWlGcK98wNG62jwDiZ6IvRDOIgeqvcs79WqLZH/mPh6GTdUFMpUcWzz27TgDtmhdsF0cShTVqwk0WP2czM3oEL0aXNAquAVYu+cilJ0Y4Wp6gLHht0ovqbsWBgPSjuKNlmHNnDrhlTKTFaqTfILBcVJvsEjoCAzO8T+yNkAx/CB5WNdPymO/jCW1ihhVh3rq9AX2Av5Ky3+QCts8uMB7MzM29Uun2IYQageZN7xcQgq1j7XxZMycHJEAepxz4LlNEKzGxVhb1ipTHVW2yaiXX4eehmVa2IqlKXTycFb8eyBqMHRxCgUYuEw1m00pBLOsZBV5hTtFzeO0m59s/HuDMYDdAknFe10ji8N/SfcHUFKJ6qfH+2l451bqBMkQLVF+AGo7gIFZmV+OT1+vgbSjOJ3kuU2xD1XEANzBq1BDmx/wi79Bz/WMU5i8z81bOnlhtnwDKd7yqQvwO74A8XlVoAHchVdPMj+tq4dxyTJx7nSzgefgg/IIpiLv1nVxkcqrbHwTRSMlx8OGiUCoeFpEvCtsfnR+COnnp7jtS6uuPNVEA5gTf65qBvr4uxcVigTRIbNNnQ2Q8I++YrT4S78Px8F6hOw03oLldTME6Z8iq80IVk0NjTtYM1pqy8ZGbQ0fgfq4FF55m2tgpyg55P7S0q1+gVJNYznkS0bQSk2oVx7ktso9FA2Q5Q1iTNe7XP7hGvBvixo9Uom5Y5s7j/e19PqVCFADWBdHHoZShqkWnMn4g7icKPZ5pt1RvPGmuL4YWkP/fe/1LU5fKIBu70hwu62HyQ1BF0XNCsnt7gwzPSqNvDQ4XqjVA9HXnbnqAQIZ8SZo40Ofb5UmD+L99Fp/LLbLU/qtYCE1BKxf5AJ7ugTsmRCvRoEgU1Asa3SaKnEAgpwuUl1tz62bGI1ntJrjYXLFfPIbFUAmv9hlVOAGKn35T9X8KFu3WMVe/L1a1Pr5MmusCkl/OTVMKBKpUM7k3DQNEKPUDGiT74C72u3bjuD99PpcCnVwvnZ11qk8/GtTSWXFjMOgIhMf78HKlAWjYJtFOn/WMYiR0pXAvC5oktTldTfYcMmBP7d2TIR8oUhEq6M4oJNqLC5ATFnEswiPiim6oU1rjgN0FeTf9bdpTb1kh0n2WOGeiLRVwyqnlW5Ichpgztey7YMOQTwSt0J4KGdWtJrXTAlPmtl669vPgCdKPzM4qAC1X8kKPois0cHP1k8EqY59Pxalw1FS8yVzxV7nDfr8JTBqDIWJGxY2r1iSATpi06PP8uo3OFfDn81SpNlPShv+zghzow118dlT7RlCnOJ6wF2Qre544qtEoTmuCfIxw3Qvbimb071kd2ll0/sG9U2V9R3hlK9Ujabh/XeRpmXjjFsYyu58xi9MNUqZ++JqmLzniXsc1k6+bk4YXVGVv39WBC1aEzavnejZr8sB0NuSzocCaXFarTOWBkRbM94Dmdmg5RGe2nto2I6xJCTRuLlIH4cpIKMYfwuKOyQb7Rvu1wetFurBZ5Pj/GIFG8B2NKFQegSkL19d/9OkqF+tBCOSXyp9KBli06hjM0g2/hYVUXzIJZvt981CIC6L3xxy0QrqBX3IFuaRCy+faX3y6fXIV4ODzgX/ZpTnfGxrMKePG8KiXtrxw6GKhZdu/whJrQrW6WkGhH3iEUxJ3kHrOdzG9A2p5hoelvMv5gBEZFgsEtuHQt5XmPuHLZ/+V2NrgmCRbaDmZbP7ubFlS4TABKJP5izc6W4RNpGAJ+ZUF+T23+Rwvrm8u9Jgx600wjxT6xJ3Kz28KW36B0mHZq1nNzuSAS7wSsjEJtZKMdtqGMKdozT1zebLwjLc/rRggsUm68/5Q3ce6jNhNow+vEm7raJzYxClm0yUvtzXlk8k/UTkF/cd3mxJg58GqUc7mE9eZeheFsWs4eZZaIr/pV2uaLUE0RPVPbCmk4o/7UMVc0fImRLB1ezmNnJkQfoQBiM9iNuvoPzRABfUBaK25SK4Bbtaz+IwHbQ6xj7MAtqhvf/4y5umRGCGGeJDnwIC6UTCYTA2dCvgRO+nyPsc97TS+4OLqVX2Bw0KsLetORYDzxWnlsnnmOHto+9QDuoO+5INwUN8fq+nQZ+xmsNW+km6ctbZy+CeKBvYsNPx0++syu1YAgSOWxgcOa+OT0vFJrFFHqYPUgxGffQA1eJKVgx3nEwSnw3wNjZ7jDRlGt0AGp6f9PzbNnUDQ5s7FCux6rj4xEwUBd7oYqCtBcjFgohvBy7b0tApJNmAyQ1yuyxP5jDnsrgN07hJ1MLGqSReNigVQQvv9Dmfi401Rt3asp4AK/c2ICR5Sm6gurhXZuZ18RxHmetu8Yk7mcYCgGRkCXbLdCj7CN3nuWTOVAp4U9QaAwTcMrfF5Cm+f6/vXdmFsyw3EMVKD9uSW4OCEXYfelNmSDXZlePchht+LYcyev5IjuKXIDuXfm2wfgjHI0OXQTi9DlY3t4wGE6BxWmMSpAb/n0zjG3j01ulvO4UXatyKJZVSLxHgLbtIn9LOw0VI0+MjUk2k/Q70SSTvc5Vbx+gaJ1WFKFGNXt76sF9zXpd1QQ8SgKqijyN2PqSuEdI3jJIUH/TiwJEMSR96LyJfaIldSUKRbOj0uRmnsMb37zdAtUu+6E+bSJs7eyCzYQS8XsEYdnEHghO3Ujkgk0kkraD82ux3kp95m+4ckP5QjBhvy3tTfLZsDFUb0xHRGxy7ZO0t35TXeXaYTh+Y9PVAhCLVemXuG0e8qEvanJPywqXIOtXWaF9uS7vNJWsFJcCHdfJFpwzcGLWp4oUslnAmtEzNGwrnN0JtgCi8qcDcXpxDri5r6E0lwc2ceyRHXHCdpnYC/IB52x/qnOSLX4F1Hbvhatus6szdU/lfCkBTBjkffIYNEf4vj895qrQxwJAPx1sLh9+FrNQkyAP2kix5bBA4giu1MSuSjgwiTK2NNp2+Mv6HP5O487RiLRx6S9XBURDGpKia66sZoCsuk0eQ6tHtKyOHPWJi90gvyVk9cUN2PpToJoKW8F3vzXI6AnTPa5EaTIf3oIMQ1tcOrN48a2MNXL2wCdHYqBA9H+E0F248MICRN8L6Mn56vT99jK9Zh9rShVtk7Ic0IRF22LV1/VM1QzF6obgTbqSLRAvCUMcQX80i7H1pRNl657t5DgAVNwlGjYVZNB1zNNmnR2sNXDQ8BgfBS8nR7zq6YDhJoReWeomhIIzJizKXSVhavbg2djYCwiynsqMkZeOADGvICycU5ypQsg4CTrXF28xPSUCE9NxW0tGL1PEYAO+fgnSIuq3V3U+VLb0O+/xP4OfjipGJtSp2dQ1OSmTnrMHe3aJx6MAIU9TGDnxjGUHUQdb7UW4+Y4HFWqXeAfEA/28dFw+TjvlIljLbomrCyXAzDib4QPYDlZMj7URsFwdv1VzbrNu+TGaXUPyuoeroyt5EMCL/fj9ucJuRIB/4FFXYhFL9Wk/aIzuI8xaY3S+ePat63whvW/SJbQ1a0CqETvOMTp6eVlMq1H0VnQ1J+jF14ZFOi4NtcSU9ALtrdO5OFjACcaGAAN4WBJIsoK1SSBgLou0azs5ieZgA3XlJgwQlc0+M8o7uvw+ZrKVpduq5UKX4EQLs2z+pf3r9k/gL6vkqChYlws0DWH4I0QVnOs7FtHc07IqMCdjOW/eCzWZ64YlefFtG/2f6RktfgeggeQAUkLsRtYV45Wan5bmMuNdxkTGa4jembOdo/5HsFI02fLMJ8okDYTPt1/nGxCLS1Yhu4bQIvo/LiQNCVojOr6xNjS/gagLxPgziIm03Sd/EmQiPzVi6ECqwlR3LIHvpwdr1Y5lFK7x1jfONveVQ/SUwGCaFNvcnbisL/44m2ReE80WnU9d+g83wdTbfXkNMh0uG33rtTsnWupmKdccDz1SSCSWevFd6gDk16jPjpLX+Quo9HhZp/JNR72UOuyKnp4o4269KJ10KHSnzD8dEXBFFmzUnu8RM7ZjI1S+BJoxuqenHDxhBi7JlS8pD0DbGV2h83sPTbNUPIVa3PYDI0mkCDGGBI9Hc4JPh4jLT0Eh31aWpWDy6O32N18kBRkbkQdFRnIYdpnt/bwbSuSurmIw5UWsxHlclcwEMY3weWGwDzMPcKIIik76f8kwvtDIJ8UB0vIzPrQ6zBTRM8xfO6Fft1nAFZPA90vP7cduJxcVVz8hSCkaY3NH0DRdF2StaQSGZ8f7WZUvBjE6TJr5bOwbEvrchFf/4GCHRgytwnEstuaX5itXWUx3oJFivAOX8n3nfcXv4g2hBpapC+z4VjPSbppHT+bzNyte4ecASW0QunZyiusG5fI3c8jXQqivVPa7Yev5RQqomHe9bPFbJ466hqAJFjL81xkvolur8mAEiYLb5bbQo14XlEQlYDAf2D3yV8dWgbYozHHfV/JY0WQviM132aF2iT++quKCjLnHUYzlWCX5yblIXZw1eG7gCT0te4J9KSXbcD2uPAnbKeePow+esB9jy1I0S94hAL3WhbqvrWXPKgKKNwoPwmYIFZ2KQZY6+7kLYfaizoUXT+12P05OmxGWnDikssl8KeHxsbrVGEzrr8XcNVRXcpnUw0JhPrHfvq2bwazkKxjCbIHzWlDbK6PO+yThpEOD0Gt9TU6KG3uV0NjSp4bEwi/0cZoXs9GRffDwYrCskLgDQyFmOgla4xI+oDeTY+ChmDIefASHDtouLIQ0dC6+EWc2sbRAmPu7jTU4YmhGlEn5C/gHvZDePO7GAA9NCJoldLN3tsNlugzxsdvv1D8eJyWnbMbBIq16bnRcRH673SnuQvIpmVIWU70p+bhnbJdtlanfO1NLExp6CSyRnvWtX8L3w3J7dO6cy/SB4w2HbRsRRYus1A6zxy8jOY09s+s7eaRBGmjjfQQ8hsOqGLlXq1ZXr6InAhv2IlZH4ghRybCkiLRQsq5YmiWP4eQXF5IsArgN0QO/1D1Kw5fMtk6n7Zt7JP8EtRL2IEpl9q1lHrmRJp0o0fivgpdH14tIxN4tdYyxFX2l7CdqKKiPR+yb6vV1EX9ZOMDU6jQUo0Q8kH+gu8yYqulXAvFV05y+vnq95py/iLsRpVxFDp3QPTZ5TJLPSzwAG2isv3pDNO9ukmO/TYpYuoJHgBlw1dJKtfCX8bJmn3sDQ8fMvw73hvVnG8zOYyXJfiq+8CeJ4ZPRftDxCIpgHC/uqlnXLlvwjp/db8CztKmHbfCU+O3B4GD2AR+OJhwrfGcAl4Ag1ro1SAuKAkuu+WPvBDD4yWnTxJIQuyIJkRtzfY69AT9VA/vBGgp84zp8WBNvQUJ/n/kR/k/H+rLbEm2Pd9YW+I7/0mqWclf1cDYYlTiHT6PBKiFXR3O8nYaFDOtFXj0a8ptv+l/GYxcbelOvNeJ4paF1IWmELZRM7nXm0FLrypYUjTCl39rDzugfruOctXvt9EC+EqFUVSq1hmqilynU/k9xJWSLkzcwMgQ3fHmW5z7ezy8me5CJ3wjgZfTWnJWhQlQ599gXhWVhcCpfcv03DBrZbeXngG9Oj+xevK9IkYgL77TbZVw9UhhTUbOzNwpdBDMIMRvrFbQnlUsT2fL1qKpbthTSc4eccEUlKMwWjE2ee8JrX+WhseDgAT0/IX8eE3ViLWUgGZCVyQosQu0f5WH9y0+NJ8RpqTioBReLdXEYVkXyf1Fyi6btKTcc2gPPl4UoTrH/UxPifQOjDe2cIJB+OmsHP/lIq1g2pZievaRlibF6MEHYzc4KErmbJa36D/ECwJ4CXFdOrOek6gKr/EXNTA4shFa8de820LCcEnpoEG/jnix0SqWksZ78ovH6gj7/EVHAMXs6upPKwzFzVb2ZkF2fg1EFkTAX5hBDyHSZ1V9Gycug4K/4C6Teo5/YgCHrBlGtalXGw0GvpeEJELEwBHw418uj3TSrfroAWMayl6iHboOXxaAQHoF9NrHx6ol8PUGkRXZoWpb6X+7w/YZtY6RMkD+Uh0lHfL1Jkxvx4X4X3JdFSgKnM8Oa8iieQ/wt5qJEP8LADIwfShqDUW79Ie7aJWzQz3Jn5b4n23DPQYehXmJkPlz6nWAE+IZDTM2/wH+RkemXw80Kvu9ez1sddA+Q4/gcJ1wdGSOFx5YP0TX5w+YqE0VGRlJ0v8D297euMgR0lkEgtPgR6Z/jOmBkNLu6+DcbRV5Xmg4HhMv9lvqXq6fBdmy4krIRYlr5o3h1rZ1UQ1H61p+IU9jfqd+XnHECC8QpteGKSj4KXSYcxtRJ7nRCz/JW91DncyYsl+MEWVitW0mvxWbY+XXV9EpZAN55bXIj9lsXwDODrBVjeFJNHXV+OZyysGFkiicHkbTsaBAAkB/cwp57TE0J+qJ1dDQs4EKVHipw4OvVYKBRkDLycPOSdwUqx6yuFDiYb31ms6BoAqMlmDwdcUelx2TrcEtW3ol0SgAAQ0toQdinzZ+hTmTXjOB4nlvN2SuC9p+cxc/OkmG2ZaaZvoaMV3XLYbgJ/Ovw1Qf1i8zdW3wavNuoxHHCrHAn5dSHK0jQKh37u31P88QU/2zFz4JeazsSeqOjVMXb1YAbmwMlVl4Diebd76W2OK00Wd6KF6c2v7I1KcAZsqhmvUjIU/ZR6o/OvXDMeDb6p/PW61SVDGDnhJ8OFi4kCcOclGfLdAOawGiRk2+9P2yz5YjfE/QQpbtHKjhSmyKRoFNZQYhhqj1CXjn8XxAw09QnG9U8FjHJ3BLPhNv6dXaT7DtHK+VVfb2hvks96tY1+vdemHx6MvFKy2JBHZr5hSI2b3LAG9b81om1uQlaV+svAOF4UC5c5di2Is4/9v/xtjAGYnBH1aSHlnwrxoW/ftMuxzql7JwYhd5/eBLsqnldj2pMOEV2OncQ1eRELxPMcmuCTolsOR6E2jpP3QZeecgCHsamtzKhyrWR6cs0LOQwIx9+RB5IvBunkfYLKU9q+JNhRxphEpYGSf1dICibdsroHH3jT/CbBnYw/+kpxFFzR1iRC7/0jZKNQgwnTZR+mYQJh/bk2OwMITN9dYAnWddQmB8rwwc4gVga7AGKKYIOncyLaIoApwq4bx2eZ0EW5C/ckhA/aE5dN1gHfsN4vILdSJWde2aasv+BFp68tJWrTGcPP57OCsYAZGPGXRmrc0vNarA8ti9k3n5a+bRt5qfX2LfBM1dnMnNhqJhpO75fGOb34zVSwI9omUdvva7DoFQUpOxLqoLHflk+G/hR676TjT1BgW/k4Q+OKP5xREJeXPZ9WVnKQ5HVSF0igKcaSzxCx8dmRC1k0O7sW88eaHr7mNgVq3Jmp+ZglumLdKCgOhXRNYJcGt9BqQWhj9lq0iEVSoYuvN244gInNffw1kzV4F3AkYUvKo3NtsqllNAVe3HHka49zSkNAkNQflPEO7z6I9/DObfXHGwjyN+nwdPUvclGEj55/cDsT7tj5/6R9MmrlhAvUyJUoj9CYKSOHLRkCQWJaLmFniHlGYfxmAClWPQ+/3115zo4CDn0PoAgqnSmfKNKwm/CVG1V3Zm7bXsDuBcw+xnanfG051CT47J1eDNRYXnrp3w8T+zmZ7jzN+vcZlcwCAUtxqbHamf+Bw1u97u2DmCd1IrkZqD5axgVzq5SOH+jNHxmJ+HhaVx4p4qCrpoadTcii968AxZTyFSmSWtr3FDcYdhGemUgY73v9jIkKF/NcdP2opDvG/vsl+MSc5kt4PHliaLGdBH7VzQ6UE6Zci/T6SdkcFv11wXSFmtqvc+2yXGTlzpom/IvzVavh5lJ7hlrdXKKEgh+ST0p+neO3HrIkaXSdYYya2mj/SOH0g/M43McM3hmDzgAgjkHTaKYGZFZv0CzzAE4MTMWuNSzhSqbgBR4+zvOgC1dNlxocrg4JaLQ9J50OvYlo0LtI1h5jtJAOC/ceddtN5pzjDSBPsd5WLzS7UFjyxcIeK7DyDNO2BIS0pI8m4wLE2+nQWYVQa63ANRZCjY8IDV+P0d8aeedplHnyWA5TmT6/kkBdJPP9BJKWvOGKd4sukhb0A1T+CG7FN2pB67OaCAY9QWviIXwitXt8sIx/nAC/IhB3Dyko/+wVSwblv7lFdcqBo27Nb3wQl754nKe5xBnm88kiKzJxBJ3Agdf/d5rX5u2DQ3UR8Vv7w00U4UkfhLSg/TLR4Pi6bUvYM1axYR5hDVT1uuEy1ACT4mrNMY+2ANRxyfUr8s04jsrf0yUFIitxDXe7my+854oZ+m4gj+fE+CCAnlvWIKouTL+d7NPxk7SqLPscW16Bj8Jg0Tq+CiSXyXjbBusNw9NVC9okgr+5sSceuymTFhf8MqVookG1kp6lzBKmi2IPKnYeTy6ieZyWjYt7WuMoqZ7jOX582n3g8B5RiLPeJ5kQW3DF4NTy2dkvJscX5wtaZtuBnVSJBRbNOG6YExFhkMK/GVAoUQLhUtc1jsHlxgFwvuu3EzcLJluv74fo4+1f+i/cPq8sOn/+fe9KIdu4rneOJzEn607ON74GCwz4gdfqDNt98b1Sl8IYXD4pffSz4L5e5H2fdCNhrjyose/K6AulmSBZ3L/jK0LRMLitTJko0SEt22NqOMmJ+UfCJH4ZRBFFevjOZzUxInu+yg9zmMHklFQkIzjUxX+KuEIcIOywzd3t7gYUKvhnoap5bZy49TJkGD4zS0AFYra9uZXl+qqiWZdUOqknpByoBZDjsFeSgaiqQmR/a5h28y6Sieja9Fng56hLBixxiYHK+Fu6n4nFyyw+GUGAkzNnbLydb17Nnj1AO/ED+DPYKieyvrUFPl8fnivWM5RYdXdoH1Obor08TJvoVGMGwkBEOusDBJF1Zl6BB2OBs7+dMWwfcgsFyAAe+TxA74iwjbVkGr4wfTs7ozCz10SyHvsyOC8IJ7+C9zTvO1Liqj7a/Rh8CsGcrndqFP0DhpvTymmI2bztjX6XHTeRwPe1NhA+NwmufTMfKsocnCoDUCiDYH/F5lemKWp13jU1uueZ4C0XqtZ8MjtwBMguSF3uYqY+cehSwINJ+sFLqMTLTRJSJAbYG6yrgdoAEhaDZOJqNSIrfQ/VRSrykfz1BH1sSx8/vhAGq1tfy/1/8eeKzcExcQmXwuffWX9mfnZOML6sG61yEE8FP8aP9baPIZXP4D9ZC5SUWHPk4kaAZiqHjqola6xWTCIciJPDRppFXM+7drerOz+6SB4hR4gQgyKqk1+27NRDmxluE/g3bWIO1Zjj9IMBm2KrvFiFL770MhecM0mi7qpTG+n6q5XDdPtj4CM/uclH0gSF18hxho5RccznJkNw1OO4RolsueyGUMYYES0cg0Ecm+Rf2/J86Vx4WCaiMjinnp24d3KntXBHIsZeAmlSSUox96EYif6uk98dg76KysmbVc2u4QhdAPDkKT4J5Ux2rXdpVma/zedNNluBEhDrUCCkPtXVHBu4cAHoKYL4YUN4M7z1iiEDDzF2qcDw2oce1MAz7lYFy5tLxR0ZvvSVMqp9DbCHXvkaztljRL9nAET0990jg3Nj+OQQk2viEFORiqGlYuIXxhzaLAEPxUR/obAlnHTnlzvtI0K4lZrqYqZqHXS7+ClIfp4+i26dB9Iw27ZRBqCRnn2KzGMs6y4WqyW++5xMt2Z5i5PtvYHDn/jUe1kf3o11q9dSWLum+OBVWxnkuMtRxx2x103GLt44MvQO2f3sKY1+is8Q/srryhZsuKETV40YMWZ9fH8AMLmoqml5XjHoi8fPN6/NIfB2OrLTNNCEWuT8xGuJfQ/f2Wtz2QmdjNplGadH9Bsed9EqiqX4oWQlmw1Qr9dv3wl2LwYi53oPBQnc7e5/E79IEDOa54VyypVY+iQbfGJgAE0E24cDM7sESdYFHeWx0VTLRGy0whQN0vRwN/wPD4gXdckdsm+BBaIHe5dSc+XwK07ld6e2Q/Iv0NCbkbRKTxknMEPiu8/RMwh0wHPRHoh0PES29dnSgfKpRJ+5izBUV3sqeYvTXcuwZQ1qS6dYjU3UleQVPnmxD5Nhr7v6S0ckpjWmSYWc6+eIizb0Ab8oPu1aVWpYi4SUEZ9oMyiOy0U4a5J3D7XdEdQJWuOhRq65mk5sYaITrNOSGUAyCjsjPlQxvmDilbFhRCP6+E3+tiGQddGLedpZv+ybAvSG0uqC15J7xLsxvzx5E//FLVzhWz1eiIoX5RX9nDOI/FsBy5zvHkAPQ+S1SL7BtvfDfotPuq5FmTA9vez8pLAfp1uRaU8gtDUSRzZHig9CMedork75wSQLQsFBs44Aoaa+IXxjc62O9+11WodFjxqNNznAuWHq9enHkly5CpUkI1diMC7xYTEATqlDMy0SzJhC1xhlJ6xkBC/dNg/7JJ8CYAbk/vtUxWLkfh6KPr51YoiYQ9r/7XbbKy5ZHQIopWtlFT/kaGHkekgEV0L+57lILNYo2XostIHwVzBsHZOrC1qKD3/lThYYJg9Asm0t5VmEoHLJ2brMaPds0RvXPu1lpjXNK0UHISer1EwarjX8RQCXZS0uWVV3MT4hq6lAzLsD3gd/RWpcbxTErKXgpsxNRDUaQJQUO5GxBD1m9UT5o67EkeW+1BuQu7j6h9gS9Pf4IpnbZ0zwWJxZET76YwLT/75o7kRg+UmgGYFupGMBZjyxHUN7JpUr5mmOltruQzFkPJSTJVEwPqqpKFouwyCw6Z1hB2XHQB9izr1TEF51Vl/V0MxMQotmf4vNgM+2mw7w71Byui6IBa1OIXn+akJH6xN7HseR1HaJ3l1r/m/ztKcW40YT9kRplmwAiEhtkHyZMCdTwU8Z2G8ZHgsjo/XgGJeGXRP3OFqabR911ajbeDodrDkSsWfYCffqHgoOfdLlo8LHaZAoXIHtGov5pGnNP59rN2xPpVSi/LVuHHBAGPG9VpjKYQuzAnCeOvknktSypCC/9rrMo/9ctxRg1kbJRIV51iNOJEKP5dMc59+o60bHr2YLi0euoMLNDJLbup5HR/VS3jeaz2r3X+zPX0uGLLkQ/A4yIsF1fhiDiooL8YuDsUMLAoZTaHVXid1ZwzfRRcCiCMxqrUUzMOLWXx163KTgG01C1ubaJn8ad6swqmMnX4b3otfDSeC7CXn9HGbNOuVKH0z3BqiJt9UYFpV9yQpUzxtDXgiwxcCWEa/j891haVdbU+yKfUebj+GJ60XFV5ZNrj3p+uTJGmYD8HFbDd27YcMtjanaBc5bDnABiKvSw1Gmbc2bE7XhF/HYduUBVmCoO8so3ApwD7kvhyZE039NjiJRhJ8OTSAKYuVYdUrSNQBU2MAdyZzP71/hRwde+xv7eVf7lqFR5/mYxy2PmhDscNCRIrH42uzsOrjrtOm8r7a1b0m67gJ6s9VBKVVb/3UXgjeLiTp7uvU2VsRr/Ii4UnXHKseX/rzggqI472sy50kRq3cnGJ29bkwPQrJB/BnM+Tk1EusKQKCVWmYSkjKYnzeHlMrw36OkYAkhczxXSl6dmGnCy+bhZWRPglc/SBNj1bF3y99gFXBQpfwV+tlN0shzO7W8XHGtbde8vFvDIZMNU8YhYo0kV+yynqC2XBwTcl43eVV9Jy+wa/sPqh6FYzIItJkBL5JRfXvtO921pJlKXxaSQCIbINf7w0OSIuImMYNdArGMmmGlDPxhNIQEOKYjcmDQgBykWXS9jW4XiVuv3j6ld5LZVf2q317gjiq4EjAdGeMj8q4IVkke7/q9MdUnV9zWcnsIi2qKT+oGdXhkT26Ne6g9YmWNSpjNjhS3ENZe5grAh6xJ16qvlrmmLkHgRz/A30bBJR99g2tP+X7gujeHiVovzkc7aZ6bqUAhN2NsQRuj5eEkQBvl4vfx8JKOtFMQKTurabIJA08mS3m/F2XHnE5g7rzj2L+3SIDCtlhtGDR1V7rqC+vuCm/liCrlB79in8CmPo+zXCk6TE8p2iTtLeacTJpvnOQHwDGdRJruFTUPKhVVIHwlCr14CgAH+ngvU0OjLP4FHghwCA5UXCYB1q0SioeE9GtPDt7oZd2Zo+wDLt8ok35deKnrPFEcY5K4m6Tb6i+TzCoyNAW3ZCSB15BzKfSiwSxDKzmkG5MvN+7UK+yrmxWStnHsB80AnNWurJDzbq8P2E1fpKcj1U57U7wyxeNvHAt/trytclXLsmQr6hKklPRqES1uiIvFKD7cwMWnJqvJvzMtjo8WzZ8mOHa4bWrGu+U5kETNgAlFytYuhaxpRfBU1ctRkaZUSR80lgMbujXQPBb8qIcZZoFgxOMo+6qJYkmbCVS9A3Yt51QOLjxVU36f8ZSsD69o+h872uHfYw0wslmZ15DrBBtMwB7ncF1Lir0pmfre+GkYPEfuhOZowlY0rS0sOhdJh8xsMu16JApj5yDcpSbtYFwnlQ/h2gu6IbvIfCR/4a/1ZXbO7GUL/vK2qcQykyFizoGNPYnee3ygKX7ny19tXkJh28nQBRlzmUIFUPzM8rWdb/naedweR9eZRgmtDnGfBsaYHEa+jEaG5TiFs/mxE8hKZ75ohdc7k1wsEF2YRcweELovR9oDzUhTYY9/J1Fnz27wO8gHg2z0YbE7DeyWS2xakYcGoxxDHloGWR6Gg4V5RzyjvmtofAywGXg1EgR92G7iDhAV8pEvXF08NM9LK4KtYBREmXG5F9rB77ZMrH6ykZqcv6Yca9eTjAIowEc37/TOfRXV+D5pon74mQApSJGQD1XTNu1NmcVpAsRQsQBHb8qzyTqs27qyDz6a0sLPb+lEx01ozdb0wd6jOSJx+scW+y/77pfzWAtuA4m/0AwXUMcL51Lc+kN5FvFdt0DA3dEH8Lv3gVRpCKsaubGNyln1SPFkxYEzNzRExq+YNbx6yxTyOvqDaXDhlreB7tLUMBxN8hQb5JcdjHj9iTLQKb2tARw8AxHItJe692C+rc9yGRJR/MjblO7rq6XHqQl/9cKxr4oZPotOEHcJkepY29G92jvN728qnkLIiulE7qBXpmmuY2d2MOiWk48bEh9+AJGt9MEHICuzMYrfEtU319ed+Tf0qq55dSU413svnTLVmRN3LAzPKk7GUuSHDgDUz1bBaBFfp06N4Eil2zp+chbBeIEMkHwjID1Jg4x84TCXCzj+QZV5lnngcYWbQDFglZVDXc8/9UZ9ewL5wLYl/mRZh3Z60CA4rgGAav6KA/c430MAPAeQlfFTjt24wXVKPxMvJl2ju5Jr06hQIL8Fiqjd1HafVqe5KarOLCb9xF/ZT3KmgbOcafnVRUxaYHRwENrMxOE0SEsdrOmLVh6EUJLr2ELcCIFcqcex0qKLkdYgUlrcKKuvR8CLhMqcMG1fzpqs0u97b/rJI7vJL4nPCejjFPYuuAO/E/ZnIONOOsdGa5aN86h41Q/9GxC65Y+wx1qUwVKp1WlW4Eu6NDVWYQ/CLxWzlh7sD7MLd9z48Pts39IUHZ9Nsf/+kcwP1nf/4l2gvmfkbzjIaQCuPCv7Gta19dQ3+/6P+kAQ/FNga4JeRZwRrVcGrtIiJE1HL22a1vFchAmErIxaVEgxdXiHLF45bcTT+wXGYJANvwqcmVhz4+yjLtyLyIz+GYBzF7sLyg8ooOX/XJA0hVXc5Dn0gt5gMqN5jPODJNmjMBAnnwYryiw8KSTAHfARO528OPnmI3N5rRHWb/px/8Crt7WmVEr61nN78X08qPLRbpHytpY8ncdeHnzP2Or+LxN3Aj4KPCBH4CN3AayFgs8t7r9wP5ym/MKWL9kU7vb0pdFo8F03VrPsFk1lSEgF/7pGGtVSay7TLBqfisH4W25mVNReCpUmbR9dxQ2bHZIgEjXmknAJq2gixS1HobxI8qMnK7xK8LJ9svm7LbOuGPeUL1I/hy6+A1sHIsyq25S8b016fURNAwVXoE4IM+0ZkveVeXHWqbf/rF9Nbipeas0Z9fLbdQ4A+rPloOVXVyXKx8tX2lY87Gq+j5wmTn+/+Ucei9D6NxQUj6AMec7j0kCMGbMkAgNJ3HtoFsL5aIvVj7mRZKRU/E4Vy6ieo0nsOyecLHJTTPPyE0wlPLV/k4DIfIvY8C51Sw9MlS/4kD0R7GqtgISAAA:image/webp;base64,UklGRnhKAABXRUJQVlA4IGxKAAAwBwGdASrmAJABPikSh0MhoQjcty4MAUJZ2vKF1IekLdA8qw+fUdS/b/yo9L+PXtIcr903tzx78ftoR07lV9MP7H7sPnD/vPWN+nf+B7g36g/4b+2fu1/kvjC/Zn31f2X/Z/8L9gPgL/Nv69/0f8J72X/M/Wb3Z/6z7gPkI/tf9w6130Hf2j9NP9uPhm/cX9o/gc/mv+X/9WpyfVf8/5e/n/8f/xvEHzy/MP4P9vP3d/zP3cXw+znU4+e/i797/iP25/Jb74f2vfr8zeQD7C/yz+kf7b+//tz+UH1s/e/tR35uyf7r9pfYU9sPvv/N/Mb3p/vf/P/lP2798f3X/R/933BP6B/bP9/+a3yD/3PEJ/Gf872BP6L/ev+x/o/3R/0vyzf9f+2/Kr3wfWX/k/1P7zf6P7EP57/c/+L/h/3f/yP/5/9n3x+1H9z/Zq/Yz/yFmQE1pAolACKrZX2l2D4d+DPpyr/mdUlO/R3VqOIJcBswtdz7Ol2FGIUv1dJ7Y1qgihAmavEMth0eXzBc96NyVzdYLhbrBm4tWyq4S2gMZPHxG4gGHUk64UGWRw/5r90PssQMgD3a9YJxMcSlH6olPWKqnNA9uHZ56cXskiJAN/J4qmBNxfodCxq+O+25ZiWd79twkz/7ULMe9x1YuX/K3Rd7FVsj4ON7LWUikZP+vFgfgP0aYH+XKngXsxefuO4P5OabMKH+CsezaPT1mpXXjCxgL3FBaM2+VDGUYoeojjRlNtxlQ+Aoiy3SLU6S672czQwG4Z0z7Zv8drd3LRxcetH2hqXfmKBwWKT/Hs5IezmH3avP83u7faFdJhHSSDvV3UKEk60KSOy+zgKjRKbgHPVA5gttLlVD0CYCAdux/Iahr8SPNKrM7aGZJrBzovCPux+PnSaF96ZYt5WMWLTaYKvVc/MRxyWLLTxqwwAxmoXsN2fYdujX7PAfTw04aPT4qnlSqrVYVNp0F5X+Qsg/3E6kYrEMauK9XyVZJjSLYfTaQG8ZaQLuBrzKr9mktM5iRkPFQBDe/C1EaiP3HfWOe8odTWjQlLopgHOpyM1fqW1OHD9H7+FBxDwWSglm6XbYyN/7m8HMZGIa5JDHHZNst1/TkH3NP6n2GpXjY9fCKCe6BR3ooYKwnJP1hK3HNR1sxHm4+wB3OYq4kNtzbkjrSCa7aLQPtlPTwlxqOPeJDx8BxekMUmGkYwUMOHjdP8oV8JZK2nxObNlD2/oLhxYYjiI0BTkVcTfPUwr7DERUEEnkf4XV34UhiuaJKRx5NrM43wlat4ZMfKg8rSikxPu1vjWihl2TXLCBqOC37pKOHWDdKR/t6KSp8RmYcDljRw+nDKWybUpvtkJRt9NnDlevXV9+DDZfbZ/LrWZH91DZCJPPkWRmiEpNhgtZdeY9DOeTeFZF9glsC0eatgEbpYnwtZ+V1Td8tONNNwiFaey5G0sAeuXzyPpIXgQh+szhtG47d63c0l49WPGSS7acKDviysnqijXNbh/IFnTrqYFFl93zTC9cEBtm0hurlIiCR5f55dYtHS59K/LLqe6LXx9Ltcw3fYQ7AUiZr3EB7EGIyYp+bnPyUk4wyQhCnu5yPkGjR1doWmMKyU7vh1gNZssbAzhysta1dOIw8X260RU3IbLMeSH2h348klh7eZbt8N8yJ8HX4jIZyxVFsKpJVLKMbqAjfkXnuNwv5PygmO8zkfxvwFnc/URKvFxgtn4VAtrBWwiYXARklaeDA7DoXLU11bdAt2f2NGEI/wCy6O+1TSHQTPMxSw5ghJgydv34RqJVasw5oc1XXdeLqOGiYaa4b/i3O97PVxgU40htBNZQ8boqsUii1eNVLU7tfB+aT3+wqh6Pqc9KldyA1XYhthkNnASIf6qPP4f3iJ0KNlJJrJu6X8fncoa2g8eMHiQkPz6IVLUdcpRmwo++IaTEVDuehf3cceiEDl4IpulsPwB+PDjvMhiuF0ISG5MsKa8diKDIKwvPY2NWXiaz3Awtzrn/Xql8t9vmNE9C/t+bmonAMZa7e8WtWlUrdM+OsDItmClq9IYFC667PVW1nUnKHgjlLzsZoIgFQjhBt7MXiW11qfkxmHKZ3layEwvK2WQJuO/+u/5R9ha+dn4h4OqyICqyy30tOtJDGcdV//Stquq5gQrqQjPk8zuUuXoj/99adNEfHyrz2se5BZWSLTIsyHfq9MAp54/Vu+VxovEJbUpYFYISXYV1wiYQNJgKoHiC4pOCzgc2fJ175aqfY6S4H754ZKUb994v6oHzU7jwVsxCbQ7TgmGpFif3JoB1+wtdPwxOfGeqDXbkgpXuR8lYzSK8WLxb6kpCkRzDKGRX2RMlAPPxYT0YXz9ET8bwzkjGkKyT8iO8Chv9ZEUc2alajOIjIi6lI0xK1LmUmMNPfLgr0NIAN+86aDgwo/+Xc6tZ12Z3YluqpdHPoyDhz7YK89KMFwKU28vFPFjw8jNhn0G/MC/o5g88KzQz3RZhfP3G3dauoXEuKr12kGz3zcR+sfFjgIXlj+7JC1BBZ4SfKElgIxVf3K2NCG9tQ4qh9lWSlun9qnXlucDp53pcpIqd6x9XGx6NtavIfMiMl29C3/F0m3t+qF/a9AjDzP23VgVfLdHr+vnnbvIZT6lp3IzGN6cxe/wMpmeb8zA2cFaj+KvXBHKmHYCVGuZePM1+dZvZLPqpbg8PhbQYto4UixKEDSX3mHk6ge0UZVoaZlgnErm92JJKg77vW2hrP2xlc9xg60VLMC+thPRV/KhbIiLa5m0zd+gI68JvvZRFfLJXB/6MWwXF6PL47cYsIm2pYj5FpQjJwAD+/94V13pH1iSz9Uw/DT3ZzZwQMl8B1hpzr+wSjpv3FAgOB9f3WyuiSgshdLKC4Wgjdb34/lpfSeeLn6AwKBQJ6D+4MJkX84kUTPFhtVsaJYUd2JEMguy0v+JMG2ug3GbYlc/6a3tz+RNHmP3J/PneSKob63vC4X5jnx+8M5+E7CA/7purFzSuSDl+V64+9CxjuP5JdGuJeqtNUAuTRp8uY3jPgaB3RYSSBuep6nwkfBS6AiL1spo5rEyi4bA3aq0z3fiJ19rccPFhQd0D9hoh3Dn55iQfTAw6Vf+nhUk9F3A6bZAqk8ODvUUKqJXaqDezaoQpmknRmvU8zORaSASqiYFgj6H+rYH4m2q57dao+CygQLicel+kVHc/YanS1+nL3h90kY+JjjC5cKyXkLHWuX60LfemygrVZHGu650Xr/YRuMjcWTvbZewjoDXE7xj0Cpf/RWNDgmwawDHynOrhdxGAJ/H5RJ7LhRaIBUaox3TpxJqXOUmsdIfyWYEmOJFC78wW7CeV6pTyLgcc3NU2bEpSB+SP8dVa3+Kzw/ZGsR/psvhUr3ZugvbPV45ylDebxDwMMHL5I9LXomU5J+u4Cyh8KgbdUZAKYfZ5effL2N0EwAWjuK4krkKWYTQV4EZY3BZoANjqrzH2olH6lCCvRRMCUQTKthRPCdUwvkbw5PNlM/L2pOW2sIqaZKfDK73cEtS2FahExWHP3Gug9ix4w+BJurdgj+rjKXoaD1OHPnwmih1oEQa5O8d2sICFxrD4c3FGYThnnROYb2HOOb0FLeZpnyUs2z5HHr9HP8zVW/wpTsMlSEbekc1I9FtqQjI1XuabXpAeAvNWlhrSd/OninJQC6zAqPdlDnRWa2aZpSwP1mAVgt6MzTfbJa9jKqdV3gFRmHlpn+tBi+T3/LPi9000KxENXsZ+aC5j2gtuKn0oyzUfNk6OIhWeD/88XdLLvZVFu1UaYNVsz0Hck3t9uOvt2BspcMbiGBXKWy33aWjj5ofR75XFszDDWWyvl7gCzFLq4TdGkClj0D8j9fM6rKtKGj7+fHuQyUugB3DqBz3GYywhhykbNyRpMM/lT6IvyVQYmceoTng97IRw/5eX5X16sXqoDBy045W6oid04D6a+QQjBU7JOzZpRk76p/zFP8N673GUTLiIvlr4fBn1MBzD8NJ/joPs2jJz4t3c0aOOmhw6tBAdTjBS8c5olBuHwkGBu3ileOr1TOFgIozypZm3YPvw7jjvxLclL7R5fsVpPTgVDsAaBPn/pqSqlQUXCEMIWsL7qf+/97rvD7OX2jm8uw+azqv5PV8gJ1ALtrwVo9+gWTameP0j97RMVm40k2JQNZN6olq/4wYBX01xEqCwAtHqOKS+jDTwHHwQDSDz88WfhVSdNGnNxNG6aKhZGwVd/VLQ8lV4dEq5dH5y1Gx7INcLbyfAqGqYpYXP8uM1eTzUiiNVhk63bPAEV8Drxr/CawIFwLHRO4f6bN4yDSs8gdW9EbFcAWqNnGRUbF5wEmLzr4BG4vT1dx1HpdXi1V5sPW5cyZ8k2erZd3JFTO9HPDSrkWnivGdsdJlZKmRdgHXjzaYPZOrfP8xmMhSxSPn9J7Dk3/80W2l15gHDcG3C4dKbVdkg9uGnoI1LXoFV/Of8dD09MdBpjqP7eagoUHXGonB5w6gYHr44bJlqT/JRmPP4bm+82vpvdT8LPBcILbhj3lwofbTdpK2PPmMp13YwYdls/X7xvwLm6kv8n0d+BjYQYWTfKUq28UXfsH1/fUFUu/Qgho9ytf7pGE0MZhG8O6IPcC5ZwbvfTdBYOn3eiMgX/J++u9A0KAPVD4YrfTihhf9DicCRaFB40ewyEjqjkcI2vjOCfxHxKJDvLz7iyaa8Zk1JxMIXRz46lpKgjHWHw5hz0HbGUsqM1KALfaHTjCgycUSUOwX5kE4zaZqO2nWVKbjaD4f/jrwZtAz7zy2ma3jFxd0FsPVZQDqpiyON1HYoLyuPI+7HOLf5JdVz8A0ws0Rz3EA9cNiCY4yT2Lw/rgNeW07SzjMeKy4TGT/4LhS3RJUW45VuSo0RBGiJt2T8f/Wo0Iu/O/smA6Qc1ng58ukqv2oyxRyPhHd5+kyGLFGKS0VsCHMn9YbOSv+IMWfx+6yVHGQ/SCKc5KSy7SG6+tND1x4uiO+2N0TQjQGsq6KZbOQbT2THhX0/d/m+VNzIRUuMgq/QvABwnEDU/dCtjMXA98oaIycM9PnX82oGSA5r9rBcjVkTvCU6QHPPJrx84QLeKoLvmB2USxrmDanqXZUp8BiHWfYOQyzxPDNjWq8PBzORj8fcwShekifgx+6EQSyaZiaPWmniviVUW+LAhL2zrzf+d7a1Hivf9uv8wSemU5iW2iWiGLX3vFILJijRIxM4ywonOdRVM12rk+FVRc+wt4+MmWmb3ALg/NKvNZYXmbkUf2hRMpTLaZ/7M5KeGFR0XCGRlCe8yeoJ+4fq1wQhsyeIGmW+S1GUUI//0e7GrLdvvQRztr9NC+7gofkz0FJAnoZOlWFZPlL5UnOE775Fd3epZALSXAYKArVGBomXTRHLZYNgeOg1OQ0dE/Lqmz7GJWVYEpzy5Qm8T1OXFSW8NjoIoTV40f+P1ee4c0jf2v4xRtPnrixE/IgdPz43UXeG+NEr0Hfl+CC369cyzLbJf3pVdyfI337qFeJAWtpjVW71zs+Mdx+J8MNnHlq16C+Di6MfBr6ll9MNl2hEMXA3BuGrqUGe8CzTwXCjJY8Z+ugnmeDmv2fxjTQXeBeM/dQYkZTQEBciwqamQqJTWJnp07l4Z0SjcmIjWYSYvGH24T3AvZTm1LZDrIyeTnzhhK5b4iSeK8O6PtNuR9pU4vMdKMJ/zbGGrqUg2/j+y21wci6YCX7A7RNT3lolJZY3yaphOe5obQMg37T1bsu6yfIcQiq3wYWu/d9/EXlhjjuvRopbr8nUv0UGbaJpM6lQ9rG/0PDd48XBO9XROb7leboRWcbOXPBNMsHvDmgCYaxfMYKR44JnJbx4OYUpHbN3hsQbw+daI+YCHltMzvNGXtHwC826p5ZaFATrp1lSJjCpb/8TA431S45j6EWA68NY41Ot6sA4UV61js8LH7AgENik71m70e8bvJlcU0lQ+oHN/Ujyp0mxFaLAhMwmR05rCrgC8P4L04LunlTG+5QTjN9CiuCm6Zap65vk73CHbfvcR0ibhL5d5xZvQ4u9HmA/1ngxXV7xDs6LfCsKxe/QdW44ndojQFJ+91xLTqXLEyMdqzPtddWYNcVwLrhb/TtuuuBWK5GXcwDdfodOQ76TikbFApfLH9gCwvYHW0vQBmAVN9L+2vuQ4inrwcsyS1Q3yS5vRFAJd6KA1kVsAKnbjkCLdOaRH/hxYIkmz1fFwHABfDN2wOZbqAyVcN5DKbxsFGHoy0lp3l6PhrgSytiGNcwy6c6qwnN7ciWOQNQFCZYYtwJWFxLP8ViOGqhd61m0U/uIjQm4Mo90Ls91oHEus7/VUuLNcTFYu0n/IQbOfLWSMOBbkCIsW+OayhkBmxRkvWRAaBKMUaapYFEYzvt1T2j7t1YU1yFXsciiEhYaWeTE1kmXgeK+yT/bzYD2yEzYcAwIdcwbyw3GFrn/K21NSOay7tVbzOwqxqNsmODTXmv6zo/eiGmIa/XTGsXB/Sl22zF9v4//F8j7Q+pR8m//+Dji74/I5G6wTS8ARL6Dx++dL/lOF7/z4wPC3Vn2R8aE/gaZ9Hz25ibbPn9EMxnFxtOPoK77fNEEKx0sY9ru9182uhPkKJt6aZiVEaVQVcWoGxZ3ZTpiz970ZCYlWPhdjFNdwMu9mhRRH1zLn7MqNk4qyq2TBabGQ2gnwkvSJpjNiFOuqhjsUMP6myh2cmtuB1fusHtFagcdevmtIBb8cS2BT4zJ6HiPwwObJzKtNJqS2FC/rOGnYO+DIWE4ZKujmg8NZ17FwIMMg/sPh0dCDDu8HhYLebXMjgfowXOiLfja6paMpg2zYIx45lvZies1cuUgo99SWcU72UocaxAi9Zw4arAUA7CXx0rnrlJlII3FC7j92XsANzirLQujW+i6BwrfwofqFmp4qzah8OiY75FmdrJLKQ+6X0bQnq2Tt8mkKz1pUYtyCJS/HD0221TCJn5lqtv1zjUHkdwV7wnSyjwaLsReznLCtrenrXJGv2NxpnQ1RIe8bBUtc5PRDCrvpCN0BmVsiQALE1SimDDUXZUIxfIU/+mHSAYIy9qa1CqEOhsNEBIw0lMx8lBISfQK8TCJCbiwcXUC3PASUJpJWPTGX+g+JIMpNZjHBnBZz5mGBK7tkTeAsTGTJKKGA72MG1fq/J3OX0AGV+V6Q7q6GKSJMVortOMF94iQm5plGKbwzmkS6hxXqiDs9Jt5hxtmRql9bbJ+1UcR0mY42Cuzp5EFi21g/aJIze4AL73lhpiYNPv5COJt7v0GM52mIq1OKRYibkbd0IUbDYL82yZH8hC0BYjI+G6AtngT/926SgpnSn3C7iVYH66t9smLQq2wLByP2LPgT8pQeaTNLH4mMQHwP59x8OvW8/pifIBtoC97d+KE5BWTTAG2Cet6GPQ1otZ/8f1vHmkPgCgyeTwRvlWFreochlodQSdWxSSU1PjvOBkJg8LniVpiKMxU5HSD7IL/ZWH3+Aa/ViwuqoVa1l4m6/WR0MdJuzMWcFGGxRqsYXsCYKKA5Wg2t8Zajfn/a45klMVmptyHFzpPAUu+UYUgTPxTyU3zThcuksabZsgOjUQb5Bw6Bp1QlvmKV2ohDnHQ/xx8KFzkm23jKjNMDhK4z5ve741XPWm50RgmUJygvmKmo8IGMDq7jpw1I22Zh04+aNiG1sYDnmYZKseSrMphE8L+K7MgPfuREDJcZvR97xbSNMc8covuCyU8xYMo92VsJZd/zyWJzGNJAogurnpt9KmFCqCOm4vTI4W0uUFTggyOgBPnxARozkuu6p/O5g4blMjfO9SfUyH6Jg96OaZcNl9nJ90pz+f7UDXSO8FNPz8jXZmpWLyWQyIYsyv4xVDOsWGMMuMNe7bf2VdzfGbdUDJaHngiy2mFF3kEjd8Ac0OgKdyk1iI57Er8+s4IoAHHDRvnLFjlsvZFIUmQvUEzZBbSx5AylCFAu8BC8/+oxvIUrePlWab9RHBylJNNZ2yF0KL/e/Ct1C3280+5Btjfo6RdRAD06h/sKolUKk1DWj186EAmGAw/z/Y1aSASzABGTHR60Tux0SCHjM96+vf/kMtIIYXQe5/mXuiysGjiLC8ITWNIu5DMFqu1Z+chZ1Ywwlrrp/dtgvWv9ISVtcu6QRAjDHp00BWonOP4uqn6Itw5996HfbJARUp9JiwIosYuGmeT9FeZBvwPcYj7wB96g3ReebPQa8l1rd9n9Bt30HI739eL9ptMP4POCX4xZpfzZVyKlyRlWNeJhSC1IOz+wyuhCY0tA0pJM9aOx6TUt93tsVzdMjoOjkpBKuGmAT/FI+3bD9SfvnCX6TxAy36GE9qFyQsW2R6LERl4PZ8kMlhVB0mcFOX9KfRTKV9tnarpZRiFvOHtp+QoqK6IdroPn+HcBGQ9e92S+8/osSPp0YNSIhANiGBZVJEhpTIjbvj+Ihy/LP2vhbK1cjSiB+Y14VMOnpkTsnd7RW+Pmi1udeTeL2N2JHinEdVvVmyuSumgCHOPas0CrqaUXeiOqYsFkAETTW/0xSkLTM6d+/XkcoIl6JX323RJxfl3okJ8mXsPVE8+405MNFhFjFaOhX4hyYIE61No6Xq7YsL0rauh5F9USKU/J52n6ockH+bhGdP0cE6wB0AbE6sWIb9+8wPPpp/Em54ZfSYNZ5HZhTYJ6LTLi4XddZx50gBF6IptbyFjLgBzLRJ5EJB9LZEcDl44qnuf5FPektdoxrA8k/at2xb9uWzDu1KHfTkIOdT5uDxg8zfuBxivm1zONpnfx5RoQXSKszHdojx4L8DY46zEVq3Y6LiZvZsvP0dK9OnW3NKpXoI3OSEDsK75gLVUXOlGOZHJOLi0z5gJ24NdBTB18pQpE7lxbbVIYM+Eza1bIl8R+7AnyvmBrbAIFCslwvXGmoc6DSwiyS/p2z0cnCK9tjIlLcEe9dQi8r0jpu5IGlDLhEN/jx8jU2zkipZdBmKAOrrYQ790I5Gzv9F6g+GT//eci9jWPuDkMArhKaVyYsbgnwIEmlY5SK5cDvgEkSk1PiKDCMCdFT4h0ATPOJObZsjYTWMwWlbUd4X3/MNp2+p+YTubKbsdUKgJv3cRzbKkGhyVyqPq4iHdXUTqUwC0Z+OCr424+oEk7T1VC9Dv9h4LaUM8ZTTx0QmmWLKHEyy2IKZfErbiDHwYp6+SuGbW63NQE3vF1rcO5m7QR6cvHNYvuZx0NWwDcyta2mA8qnj33wdN9RUR3v8S2avcDXAn5enGlscdUU7+0so+Ygab6RTWEySOz/68goVpblROycxmcBOC2YMHzqiYtB7RxPFamelmd1MTgvWD4fPi/PQd75DgOgoX+INDkIt1xFizF83kp1n/aT8iGbdjLf0fdUF77aBMU0aZwqUGFxnfN1PkolnV1j/HhjfVd602LlstA1IZL/80R5zVAwRpSgo/1Omwh9yw40DKDxWC+3NIycmc57gYwN4KAb661LkyItK/FE51y4nzgy1rYJRXGfAjGRqNb7Zs1k1ka+0dpyrfqp7F6qrM5ZrFAFMPIFY8jkg0hAEP7hZfzRcvCC+y5tPUsP6Zv22i/iczi1VHOU4d+mhBqYV4a2St+pHWjlpMGXx2nm28SoVRV+Z1HQCUXuCb2FrEf9eGFCdLGZQnxnSyTDxbMZZv0v8784jkxB0j7jsJIMAueAJrKS77103mRaW5sN9GZDGoDbX55WnQXvtIegO5+v73QeLASgzBVmxE4MyL9WUN/HHjVBercavQMhKBvK3zCFJ8ElfbVKrC3VW0+p9QdP6PIkYbG9DjqQzzUcsW/09Bc4+ezSI6ViszW5oqh5MMkwusfZ3JHyNdwacuImaKlueY0OOwRRkyW6sQboMG9jHMh5y5Z/FXXdf0mEChGd6p3ixs/CDLLEQRp8i5NVdRmxGETVxeim4U0eI9oOxi4Yvgr0+YRfAjpnsTsqQtvSoPe12dZK1gwp1yGf3Xo4Tc+Dfu3XGiUWJyMk56qYdMoQzcX+v/rQmdrUBDqyYfOkcifcEi7vf4yJnGyY4mkXlFbUiBH8/3l3cuicYyI4MSFJq2/tAKbfMDtW74HdvoW+PdDyqbmceV8/FS0JFUJIawDP41OBorx8omc8I5izwj2sj2ftwf1zy4hGqJaDIESu3kLXAeox+Np2gngKr8qaEyoRdLKlqR+ZyNMQ/vw0RpLt73bhGM3zLzGstmL7vsnV2fcJ330AJUapALddOOLOZVfVHvoT+0MuKDY9utvt5MKzl6uGvNw/qLugEVydtGg9JJmMkTV8RL5pjfTcpcc26BCPbrNf34SdtswpZgbAoe5J5Y/fEdCt2iyoBY6yw02c9ZvURYFmwY6J/V3PMJYZipm7cArafNJEW+VnXERIzZV6YvNGUL0HKG+WFW0bY8M2sdqdSRrc3eagU5q4/b+7YyenadW0WxGbyBRo0IqWdVcEYDAntLmt2af5VkW6axtP8HraZNehlGAZaRFpriiYI1Vac6hEeem8JdS+vwx/1kBbruVru9nqO5/uLHq/lRie7zDZ81Hcft2nX/qjITrToAtuD/ef3r5PXQdyqcOg7i0VjvD/VC9oZd4f6AYCRJJYhlQli7n9ReYSCGiwXVYRxwEvl1gDYnINdH20Ynz36BFyDAnswLGxJyYtNDKVPptZHQkvPZIwjpBlj9kzQ1PVTn5hKMbmbODhtGua4UHSfuOFXANHncILCUV0lFfaK2+wr3/3EGrCe3afqOAFLTiZMztcKe5wJpG1ewcZ/jidHX8bo5pEzTKqTyGJ8u+dN9TfL390BbbaJEbR8lg60E2eLF9+qpouf1JUV4mixapsYfTYe+4uQySZwePsmrbojaBW9+9KXmNn4w20GhyeS1TYmxoWui1PfnbFkP2S8vBfo9gajhz+kNpOCXq9FfJKXOwiX8BbCEVFzRM/JXe/y4uvtNwtTLrvJ4gmP6cVu179WdBr3Be38IHtvD4sDmFYiFNOJ3+nNoiocunu63huar8FP7KZ9qwh1YcgAcRgf/zEBnO/WKD4Chg8dvkKUL7d1QZmCafYL5Cmi0FXgRal5KP5akFOoeawsSoTroTuD8eGVChBrcrU/pMPmFmpizRLbOyPnSPeKBsB5LGHhoJbKyqXdkwMxzJ/YvfmJUqU30zQiv05OkG4BZeIlN5383ECbmEGb7HlTHblgdMtGE6eCI+/O7BxuAUTGtzYEenoZsrpvwkDVmDDiex5wLIU6TL3pcnH9ri0X5IeCnqhhI8Yb+I/nZXD6U5Z9j6gEBigMcGfBbd70WFP8Mbhk/FLuWBczwbPu+DdLR2rdeL9bACYtdtRevn2BfCjFggmmRUsP93Ecy/uLYL7Z/WMm0Aa37ifRrTbz6285/8mW/25y2HuGNwazEfLhFz3YEbmEG058zoqRJkNDFFpIBbpeHFgPUNRs6JsuZpHjg/isJjVdBxwbWubDoHoXXW4E724WYAzFuYMmmSwjjPMcNUo2UcH/8QGCEW5T3CC7Ek7I6QR+sb97eBjnXtlVjldApbP7p5PKYeseutD0nfCPSlZ2es8EVTVanpu2abv7qRrlLI+5WGebq6i6R+9UWv3Nkr2xwCQMs/42DsWQjBdJM1DT5QGdGEQ33MZ5zlXBhJgVsUFLxO9OyZax0Gzu43r6oc42DvssJTChQZMJYPEXqQLfclXROpH3oshC7lMpWAvhzEbmNV4oN5Qu8Z2/vPiy0EtgYLhmVVSjq/MHRgPXIpNSBkWCr8G9G5HTulACE5/xZEXd0LOZifgBeddTlOFo3cCMQmfgK9fptY86u13Z7/ukpL0l0zlW2pPyeWvGtweyj5V0gFoVo38kM5KYk64t6Ju6fgIlBat1cKH9gr0yqhf7YEekv7KJZBxct6xRCl+cER4qloWq0MWR74A5ZWlTyclYn3fjlHtBrQX9eZbjTgGyKOUlJE7kvkPO5GLpmrtM8YVgzPOk8j6Ibo3+CyESw1uDGJzHSn8CWWgMYPsA1II9PjbTvCqEZyZB0wHCbgSbqV/HRY6NMaquENlJyEH+fBw4aYoeDfCjxWz+I626KB4xJEw3Dl70ZED55p/hpzJ/aLLvk788BiBDzMRcc++P6swozjWj8S1LdorRm912DpJGQvtoVumxX5ENdA/8yZalf/l57RXuQRgBpaTrvHuzxOXxuw2MXSA0vTvN9Fmqs8ksTfJymW6lmgbMY7LfxgL6d/bpWRknr4JT0f589ujjrZ1Xt5G1wH6OLADZ55nkITzjOh5JIBrDODX2bN6gP8SxF1CB3RpNZwmRG7rYPaVmxZhOANqgYFg7o7Z//eVqMCx+v/vPnEzV76JPiKq6ITYbdni4SLeSLuurLWGcy2zi42Q7ynrmOBxnOEgYi9T4Dz2JWZD/9phJb9UXqfl00paXG2umqnKCJzv+z+UQM3PqJduQI6NReJJdu4wSvrG6/AbBpN7T/vCEGODb0MVv/hAF4uFsZi/qwN3yOnAD6FxWAtw6+O1CUNapFtGbJwqvSbPutQVoA5eAu6DD9L8y8+NxUr76ONkwbXOALtiKpXfDjcLmt54c9Q8bN4m9OhiBE+VPz3wpoGD/tblSJBy1xYP8LIaIoRHdLFM2kG6UsIQ4C60XQsDs4YjLq5C00IQl+CKECc7+0VmmVfxg4cP3bCLMmuBfhX2sYIqn6Mv1sNF531R3VLik70pAX5IPLHzQQmwbbflLpRycv5MI0TqXFAbzHWXCANZGZEzH3d4PJCbTlZbXhlQyooztejPo4u4dnpwlUEtR3LD2Am26RRTXgyvEnPUb1JeG0lTTJWYfEz6vV67aMEfBfhAMSYBJzez+HB0CbKGnMs9uA0QzIzWRTNHmXqiu+yWDgnmfnpFgUOm5rxMU4o3Lcuf0oo6cBFBRKElmPQOFF6gELTVdntb9ovnrkkkLrQgPfs4LhVYswIFXxuSJcJg/+WLN62dI6UJ+gnlusE9cDyYvZ5l5IacunHjBOI3dJkAAOH8VIsR9gZpX5Oc4HZRk+yXOe3OyMBqFJsMcGeZeT3KACpVtBXTbYpCA4acCnvyuE2Ug6tGKFcW439IUcwMLy+XQ1Petk6tBD6U3lEz/xe8ThAzcA+VX7OphSBzeVMG92C4Dn/Vc4sXzl5zAzDDHUINZYA4EmATEqeGTrr6m5VGrEYdcWCysCgpoyCT8j7vA0klp5D+zZ+Mg6eCk1k/QT6VmgMwAe/QpCjxBJxcHRe9ftwYQ6S37/qB5rHS2C+DjFUXXmih8gEhGUNGYm7wpkr1iP5YAQQua6XxUztOa2HmoyGXtuRsWP/orDKg/iZcqsj5SN3E5pkQYJE2lde5D5CIA5eTi83Dq7467VaBOXIdAzvqDiEp5+TnRJ/RzZdIC5s9fe2gA6Q46xqDySN/vQL/6dI8Ct94fCN407HsLqcS9KJd2BxEC7aYnR0/VvnGgiyvsBYuwNgDH1ktfjqBZah17u1zeEVUv2HSS6lcnh491thGQ9dhBYa19NZAEO7ywDHtHPMITokmTZFGzBKeiekoFIhvwrX3aEccU0Yfv3ft1ksPaqFYa/1Nuguf2/2YOttKxIPskXIJrHJ3QPge4WhJNEXxNIv9EWN+SrYQhXNVGAoDUcfSiaOuqg5ear+LaKTtK5GB3XxYDN/S2cQfF7ZL/3kwPEoguIJymG+d9XLNoFBW4t6w+wg9+Tno523pazsD7o1k5mlQm3X7UjIWFb19ORsY7TtkLf9VxNClh4sFRjmsitYODS4ZferY5Fm0RV02V6/LBpsO1VzcqVBEosJsuytPrFsC+Ab73sq0TzuMRANPRU7zQe77HJMWEA+NBNGwQERs99nIb/F7qx/WNOBJKFwY/2S8jTjyuj2z2aoatONQy2I3bNMbsOpLU8Czj7RUc9ojJpWGQrhMHqTp+PJg13pjDLvT1EacTfxG4lNKPvL1vBgH3R9fU/45m2JO+giRkkTKHv2WXTZFWIj54jIK60XHrwOShNrrnfCNiX8A+7dudZlutl/jVUbRDSm2NIW/bVU1UL1c1gEMBXK5d+bi+O1XlqKg5Wv7N2ttz9lo/4jpQyl0bZ2udFiqdwQ9jm/15phh18JvZf+6cAsLjSfaXcERXNoP4F5hvdM1J4H0q5i2Bs9rHPaJReltmMxA/oU+WlXOy+dRdExstj56pf7I8M7/DeskMdyOE3vxYyyvFQ6AiGvuWfFuJlkT9H6vjLZhHiQGHY05S/qSb7LT55AmJoVkn6YhNFXGQDFQzhsC+9PrFV+pP7VenEEJB0zh2ngnIAg0NQuw2nu0yyVfQqkDtgcCCQsi9gUkjjL79LgpzNiET70VqrCxRJQTKg+gcxYYSSGDiu2dZ/b3RhuNV6FW0zqlLrJgcVsVSgsUOfKyPWHY1o02uqKrZNUI0Pfr6UPKt//XMaPfDc2lDOtiV31Da1WSjwmkYzLHvmKHpk545QEccH1y2fg5AiVhxsGn5JHfve2F1NZcGoou//nAWj7VP2FbSy1YwsguSDi2UpFIaLpVo9L6aqMLR/OPWbyqroMXpOSdeYZ2Vu3IL/RTzTyATQ3DD14KoqrcOtvX6c2b4p4TKwzmk7GopaRDtg7AkobKBBG5AGQGokheKuki4RPYRFv+mTqAQ5yvCOdp5et3k87/EgZZyT81Sjyox8zZgC8o5Nz5fOeFFv1salBpKq5wFOnegB3kQCV7Hc+8xmPBANlcumNANt8bdvIUKQDWj9rTqI9Lis8jW5kotq12ZyKAep+nGUcco4PdcFn/viYNLvO9c263ip2d8YAri/7TqvHPGBIdll/IjqA9tDDOJ1AdwQhw5iKqTMXDpqfC9MNoe77u6Cfulw/aArOTGfDfC/kNzmreV9cPlI1QsDTn1FKuNCilbj9GNidOUGDG8oYCnfgdb7YBPxepTJXUm2Qyz+QtTQlZRNJ+vlKnNtFaq515pJJSXEpFxLJKyokppjiHwypTns7kxlxEE5nAl1zV5uUSSNdN4cIVxmzyhS5DV1v4pxvsdC9G8Vbp+YTmdodLiAZry7jHtmaznZt0+AFGWpdYxAnuQDNwlU3n7LZXtqcEjS2DtltGciouNK0dg3nYfb77K/IKXp7EtN4PcmQiY6e1QX+LmS63PO+Qd6IIJO7XuoAAfwGGF8E3TbJTXGQzXGogBX4DqcBZ9gLGV4o/3BwqXjSBhEbDjaDjNdbJppAZnEalcWe4EU6U6INf1pRxwpoSvKHTMhJPgu7XVteiI793WfkVxllHb9o5TwlMrz8gLW7SrJPcamFgC1fnKmRam1ze7+sxR3C/2j1z4T0TgHiYKOIWS2I7dpc6HM8JyTFdCt8XGRJJnADmv4FV70wIwcptWPFflRhyHM9I4SICALhwMKm320t7OGdaUijv3uRvOV5hdXYHZ3smFD5ri2/CvLTtuPq12T/RooOmR/SLAQ20hDZJZ83xime+HI3FWtQsutq/qaYXBemMo+h2RObJ6hWVAAD+EV9/ufZ4H/M9v88dFwOl1ZK47qfGj6iex8qLwGNl+VtUen5M5AxIvayJilRqXRH3BASPHU4G6l/VAqfnGbxX/OylwmkIxCB8fkB/RlWSQxzY04GFnZPFwIUjI9LukmlGb6i4XGOnlhC5080BHTlO1zc/0f4BNW8O84F1hrnNLTX5Ux9NDGhOrdyigcZHFkN0nyekVsECNolL/LvgWEDf73EfDvxrcra/4RfrCaL8zO4E0mm943kMs/HbO11lg6d6punqfV4NDUPtHEPdKHOVGGZW4ifRDfCHHm+LRguaUWBrZItduMl6bKpSyKcAfznE5gk4oyxklxmsYisFWQ6nf3wi61O3FVyuGWBzx73eCpEWyRIZZFdTdtplu9lgZRX3YAo+eSJ58JnsXnuoyeUAo/LrjNWN8qgt0s91HmvmqVfRwawcNq/1wGXySWhNyCh1JbksNZ0v7ljaV6Yi8BxGsblJsvovMxZicOlw4Z5BiPXTwu5con3noiHKhANIT36o1OAL4CM3GO2eMLjjWnuE09lvFdsc3eCLQaaq871hCUsegBgQy2yxfxmv21pZAXD6mJAzsea33AFv+8lz2DVpYKJSzI2QlZtle+c6XNzuyHS7T6/hXJYsMP9b1AoO5XNP4hUwWP5EHkWOYEIa6hfEuPewZSYoxPgPjimSBnYM8puGQA2GMqyU12EmbuztKsX21a18lqlDcfIWOyJBztcDaECdDfXgFRuHLRRh4F/5bWyEmkttUGaiBoxmdeFW6Fc+V/famzg6a1JllZK2TTNvVIVfKFut0VWTTyBI6ZIIZmtTD8J+62ia2m0gSJXog+jeXxuIKm9raLJEJYdulxLV1qkWcP6Og4cb5NYnxBs03Smt7+JwXYbkWeL72Et29Gp1O8NRGk3PBp09Rc/w4hSe3rjnuR0OBsGiJ9NSw4pta5z6HSK8d3PcKErRIy3hHpGfTL7FXKapZy8YhUD3mxNqpTMLK6iFYyP6KN0yUAzheY6Ym3nRX0XF/HLsLvc8PTgv1YPYDp4ge6OAtB9ChBolQlRFe2ljJ6wlWSOLacdGXanYBZ8K5HtrLL5jG3pRnCJHn9Yh8O9CZM5ql+5Z89Hf4+NYu0AFAZ/fYqJ0QYrEndTFQHRhDGAY3h0qn2so9TN90gIzIsy1dpzn5EpHybh/pYvQFSeaVXbYNojzNBuI6VB2I3+R90QLX34hey+6NHxqHs0AhsVCrqo1EAQ/GyaACgWZHej1DF7VSooXJCYsmotQj8v+Fh4WY13xlz6L+Zcmplm89mbsw1bCAHsaELFCEKfk1/mHnS66/JNQOoa3RonJj9mY9xIwV01zveeSI6AkejdT1FzAiCU8C3MumJFXv6ze3WM0cPgjqelhClQkfgavyUnJO4VmXdEcmu+IUQsDflcSFFwEPqWCORYFpyBDpVhZJGH2U+5npvly9YsRrbBDIh0NslrZqttO48Rj5GJgZRzarfP/vuP8pD/plYKC55CXkGbwWI8ebK888J4qQwegq5aNb/2fUJjJSpywKXVoIcKI6Psg0gutHub30oIfcobT/iTVgPDyw5B3aNuvNrKD7i08fW7gD/AqL9JoVTrhhXrmGnavIMK6AMkCzOXPUhV4q9O8/7TxoFSGcGl/lADnG31mo6eRnXFY7qHPS7l9na/177y+hXABYYjE+dx0Pi6LmnUBQZcSdPNsYi7ADM6VEqQbgq/0bJKKPzH/Z+61T5fjRHk2ywkHsL6QeDkAsX9dOp/sA8B/RmNKVSeqLVxh50vCk6tuBWeAm2ytMXd1DXEd+NxEGf4Zfr6NHc+kUeWAR32rnTilhSuyoaZC9ugCNB8NCB/eI9Sy7nQN3KmBlG6giG2wNYKeUB9orYV9ZmOTZ8GjcjzzCJEe/DofHGZUSuXlLq2pZG8BRt/BOnj5Vt7KDNgn/U6s8+tqmuZ0CZEnrIvGyzeD94Gg0O/4C65ImvBjiyUWOPJ+7LG/fXsYKycH9A9/r2AuwC9zoLM6ebK6oaAYCC+V2zNHP6aMicIRkKXfNcBiuybs7NH/UmPdZ9i2x4C/KSEE2D3XSKLvfSlx9wpyniYTC6M5wKak4Sf5AHbP/dBieIbFd3RSFKq+MYp3ZNchAVEFAet/vsFrel37CS5fg7JCvRT5xiGBt2fX1QyEjXYzo3sF064NuC9lGXG3vmz46PsiRFP5Z0kdYVTQ+m0TBjjn3tzxZ5K0N4gSM42ex5JY6933An7EbIox3ZwumeX/ke8eQnOW3UKUAT4ZfFWoCzk2Kcp17qrssHzmSNTzg5ahy4EiYOSVTTMs6i+yTsXzPF5OAOE9x4h0oAXvQV5O7DdNHL21KcaDgod1NUARngbxihyK51U+yakXt9pD/sQfPc4NEx3SmyDZrx9zCfiW6M1SvFbzLu6qHXelaZw1+Tb9ueCF8lmHK5+fhl2u24U8G6+9rLcTYFNJyN2Vtuc1aYkdPFVfpesrV0Eu9Xp2uJaUfW/r7IYiAm+//iGK6ojwxVHuJXkClgyc7t5kk1uarPDRrz2RFC9wE2s9W/psVeFqY2pOoeJdvBmjw/rj0RCWU/89tVik5a0wlqEXQqcIKA3cUGwMGBZNeYY9wOPcCrZQsreA10xGk+fuN/rdvikx2JRBkb70LaXC/+8Jb1UEp1nf6FQHcKb+dPaj+KUUMgEM6wFUxs50vY0vN5aT9fgQPvZTGB5oApi3p9mWHVca7WG3QiZFIcWq/uJjbD0+tfFjT+o2kthoi6dKc+Dr8qVY5l7Fjlf3SqfNrmyrIMUe2ihKKEomGrGNY/j7bWeW9kb9Iqi+vYBMk1rUXVmmZh9AupYs9YqI4M95FmKpeF/ugR6ajzRC27V5YmZWhcLieafRt9msxxt5xqewRyiEceGz/zs7/BpQa8Pqfqavve9Yqnb4rhg9ocSTVVGwyOaSNzQlq+9KierpXsPPtrQm4s7ZhsMuzEBwY6o/6kEGgnYZ0U+LxEP3gaZohF5PnbI/GQzQmYBR4052UJ6Iszkst6aCLdKm4aFf8xBgtZaoGJfeMaWiLVabqnKcPMk1L8d8g889smy3Ha7icxjAnKyZJNHeoFgZiG9cMY7i2uO3mpzzDmCIkP49r/MtiedjLO8BprUeS0ThTnG8+rfQqmrh62YqK/P19W7txZuAi8FAZUckJjTn8lh7gdF7Ut595QquBW6eo+aR9VsEI0yv3ZD1iyTOK+UVCfgU1Mi7eNWVHrS7o6URanPLmIC73/MaadtLn/8bp4sC7rFKw3uvaASkhN6F+HzAFHSQep3MgtcN8RDLHBSBVKob2e1qO43xMFio2mX8+Gj7pwormHCFpz/VIzApFdVcjD3iV6G2Mq/kdmZ/DZfrePGORlmByyRHSGRSm8F4L4MRuGI9iCiBP8CgPVdz4t0I2+M/5UWhwAcB68dY4/vFKN0HGBemAL58+Q6k5ywW0KqphcqUbu7ToA4nr7tWjUmOvrAt8w5zmPUWWxBrPXK0kzVkZwYrNzq007wVW+jNrJUyEk2B+XX6gtB7er/xWTLa1kybQP0iFiH4CRifdLVLjc/kQWg4WF6q4lH4eyA+cjKGw8jealfwhGf9uHzJWVinfCzXJaCqB802Lbd6umE9NV//c6386WnAuGRjFDY9gUIB29vMMtIPjAw+ulgdEz/03O6RVEQc9w+UkVnIGDht6RYzyTlP8og+2LBcVVppiPRofQX5bCEgenS7k/OzqJAvKt3y4ZVTKD1GkBIKKJJ88DnXJJg/jGgoyj904bWmlfHsBJ1sag2CIDVaukZBwBSb4L1gjq3WR3O+kNM+oSJ098AbCNeCUz3D4IH+dcbjRqbh1KZUsGGkn25iiY89XaCVVk7a6iyvextuO29v82coSZ2mHQ7VEdveqse+v+lBfQ69bxw3cJN1TdF7hg2jwc4apmnjxxVKDuuhK4aYUyXyeXH+zfV1jrfoF9Tlp7/hIIrDJkg7OZaGBf35LMti6W2BuVionMCZ6MvMyfJRmHs5+8bY+BeAIA2vs9t7KN4kLhcRyhMvQUj4LNbgXndlgvWeW2Th3LfNmcNUnU4Qb2S5haFmPST2lrnHx/dvYgIoz/NRR9D/acxHjbAwVwcs1gdNq9250FX1bAOnEaDEsGO63FD5S+WH3aogoHhgua3Ohv81+PaEviSCYzeJ00fscdHvGkV/vXO5ML7Cx4EJaWjoJYwyuCKwmxHjU3q6hrXmFJF22aGQI3rNDCtacT/sc9usxvu3SV/6r6zs+H1kce+/KkicSdfSRYxNkicWcf/6eFsApYR3ZLnjjOoiZvEabECMvJbLAHNcL+5Ji20I/Mx/vKubAsvfVi7OjXfnJhTtsTWD8WqodISEfT/6Ns3D014XdfXBpberJNZhnAZzBYYwHlay9gkhLoqZaI6z8tbDKyWsb4+rKExEG7vtTjaAwOMAwhzbbfAE9OxY4yLBOD6DGJnpPdvKs53+eXEdNJeXbDLm0ty7LHm3iaI6ZO4x2cM4ixtiObViXKRQ/A0urWjkBwKWdNGGzWgie7IhIVjszSh4gVgRjZPolPniqMTGSllgsFYJQJvdFLvHYrYbF+DeKJeuSoYzvF4e2u4O59F5JD41KO8ElaDXo/h0qW7MaObc6QJYF4cGvbjwJ+YqljwpsKSbhT8a3YKXoueQWtX2n56vbMisgx94/TfWKbEAhHcQqwFmstsASVwD3197QI/Fvw/eVYdVaSEYODGskJcGEsvt//IM72wdOVMND5VK+E2YKBcuiia3P4i0WyHu9hU52yHTY3HEeUyze5hzVnuC6tX1PrPHoF7VpQneZNifgB5g6TkvPzkcXRomaUprbCsNdZvG5xhkL0zW8WRM2Lf9GOMsZBMREMLTb0KT7XakXY1x8RlOW3ygwfnLw0lvBBh/nUQWlTx4rX1yo50mz09v6nZRucvtSOO2RvcMZCwxQNrq+udsH+tK7Mr24OmIEMwEMube/Gd0S2ql/ixfcxtV8WPSkoAeyxnUxx1Rq4QwlYZP5uxEOSqgAO1zrO0OqBjaO+Sm7ED+nAZgsFpFa/ZRd5Tyy+XKVQoSlV997zoO4LVw4FmcFiUrQy1xxAFfkc+sUqEnwLQ9O7lYjRme5pYeszt+OsHby6slUbgmMBztUAO2+nl6YlcOdaZ0DeLTlDfdQSj/CxU+tVehybmo/5hqldMMRaUsg4r79/GG+3mGz44Nc2mCErGuLfNSlypwzoqqKePNhivj1RU+FkUuRPpq1PBO0mfdh2YRbXYr7WqsmO9QLN21fZ5TGOiHWwFPhBaT1XsbHiJm6OwhzNGkGgUxXPzRFXTN757IcKmGRDfFRd9D994E5irrPIBEzJiVRyx+kqGKGoWBNQhVdT5Z7gOyJVs9gPGhrO88Mvc+tiHn3DS842MRaZIK7p0ggK9HnG6++F/c2wJpnbOhgwKUGhfVJayt01obCMilktOu2cEQkU+R97Nw42JElTFCq1o7PjivqawVv8YTrE05HsKFo44Ww2SooWVdURbZU+KEEcUX0QH6HEVBFJnub87SV4ba1I1dwOTIw1Ai5K/IrneKeOAt+p/P1iou4YKW7tTt3FVkQdKcAzj/3jAtU+H4BEmw+vmxSvXLgFO1Yozug2m3DnS2OMqP1ld2T/NPuYY03CNMfifqK+XA60DXa4IJCW5ddA6K6d5sM2kWgoYkiERhtBAr9MXsvqsS4BQPzlm/91TVS+TN3+QF6eptAUtqZgJH+13SGUvUXyZ3TPzRtWdJB5raqVc/yHCOkHSjfZyWBjdpg+Gc7TKQ+tsaXk8+q97AfbArxTbYsNWXtyhtLY/xWdAl21//iIdCXJPfnNTy9mB0xFNjJL7NSYjtCOiVvE3AaPjwxRS3uk1JNDX7s2LvyJBASKg5riRUveEf6QSdlfg5Xuy+yqw1kfN/f3aOLx8cfklfvJWVrRRUz0iT23Te617/XsBofWsZwqSO2hN1I6197FPrO7wpvCpx3tDZxmmKGFj3TbJALdIihWxNNb8rAmzJz+znAMelLT6W1bewC56api7CyoRVidymcqydwSbBUoct/iM+h2Er7hiN1PEJvR/TtcZgtgF05gwzZtdUzTgZ6y8ujZwZO07cZN8XLi6Yc2HkprXxI8pL65McvnPGoIgC6ij2GF1po2dd+67+UZXhLQPzwbilU4RYBgAUtnWLuTSvwAoBiuF0dD9/psxwzSkCejJK5GwnNaHWRYIODnT+JaXIIH+A0I/Rw+/4KvYMysoil7j62TD7PrOXreinaq3ZLhjmq2htXmLaFaLRcEty3jkYuiH99RPNuJ66yfLSpqxnCoC9jyUCMW7DK88vNRFPvz4iHHhi8+7SMyFt2KMQ/ZoPCJPVnFltwCpVhNtMw5jnC3pIEzhWVcKS5uWr2KzA0w7VI7CfQN18SRFXJpobThbEBgShKmYrljdQu2DGQ24zpC9mqTTkeiAwL1R6tLkbjsCZc0kyWXVqcVJMpIHCuprXd4x/ldXLO+cs0JP7c1mc+itU96aeaX1YGGUf+Juss77ku1QIqQCDq5g3MiqIn8IMOR+PEb88Ddb3I6uXHYVd3uzCeWOzwLIANBPDbgEXuE16WcXz5He8dYMAW6f0vIrFWbHBBVVaokNOvJX+fBr0ZbJG1fkyjLpB+znjjuauUtkynOpGGXbXPPsx29eyrpHot5mIIzK/cUGzNBcdxFIDasl5aEIpreiWOIYhUiMLdp+0MYFKD4rktT3o7fdD/nJDMNOQd1KMFI/drb+1ApLjLRrNoU9Gw0x+uJj+B6fq/dkTQzOhh+9GLhqL1bGJBEI80/c0Q/G4w4L44kzU6SD0sIu8bMFPldfH0YV76p/H1BLYSloBSC3IlAKBpvByW1rJnkFYVNq6VVoJdfL0elpn2Db1PGY16HulAQBb0sJvkodSRX36uUeiu8MELVegZO/gjEtY5kR8ZPe/JlmFM2BMhrzDc6HJ2GFcYxYJxp3WTtD0mIrEUaQ0+7TDJjOrzf5iy3k8n0SB+GtMHEKtelO4TelB5sFSO/Zx5l7n4Ci2JyUHizSqJ7hdp6AtzaW6cEMtaI13y0OqKOxWz6+yW7ymrIOsnW85kcSEdLpOgsQwRllQwxtUyjlykaS4xsrjDDst0AHAZdarlHZjAPP/Ic1ZYEGzlwUemhE4NFueRkrd4vpRYwkY9PZIljWAagxiym2My8XuykTl/ETudoKz/WJLFocp9eZr61zuU8mWeH0Sxwzwk3ZK8y1jqHVlDO+gEfQPspImuYIIE95ZyAsuvHtp7UsNI9r2VcGYsYF3ie74A+LD/s0iigEY6Vk3re0+CGmA0cWPv9Wcx0yybwvAvpa7Z4BIdnMcIncWyoighb7Ml0lBkCSiOf1DufezKeS0tN3LyU6fh1HDXq4chTnqRLczUvhCGbvsxR9Fs5DFs1K7ANE2yicD0MiMHtm2pCsDgyJr1EJMXYioxQ6Pf1AlTzR8+6mCxWGibbx9h4MsvGqhm49QHnxXIWMFsoYcxgj48NIVxxabFv+Z0YIgiryTKW1jYsDEMb8XBazeOyWooZfPuvN6HHu5fNF2VyzlMU4mfNar6Y1PJbvWBPzpRJQtQQ5dFwL3d75EsR1nCi1iaZQXJyvsHzV1IfS3fqSTzzcfI6LUBKBH5vcvvnjGvjX48pkJQcQd9QOJmv4hrELOGvn9CRhnhGVdfFcIUAHyyDgDJ+SrOX/yakMOw0urkrisKhTD1Zm3OdwwjzNfLDXTxj9aVTr1YYippkM+0B1yMiKBRvony/5zHqkJ97uKssQDv4pgmyLJF8+tzdcUXVvj1Rrere7iN8mJU+v/vSnGR6bg/TGv+MzIeyHAs89iibfXfXfSgmchBubGdtovqwVfElO4CZOnN+cnyq+ffpgquvpbrT864q9Y3n1BQKAXgf8RWlkQxSuGGmx03e2HVFP8d4LJi7xoBP7dyHhs6dxr+PXTvlz2SL5mUXRTBPOYJuNk9xMzDj7OXuuVzi+hzjJOrvlnr59Q7Ct77nBXkGPcNNmEXz+zXPOMEIY0kpM2tOdYeIWLBF6r06w1ca3qncYUSGPmgEN1/adun9KyjFm9R9RMri5DEs490Pdj3zSd8WmJPvxZ7tr3Q9SxnWB7hVWaQ/wM7s6SMsfcb4C+P/OcPvXyhHksLEwMhbaJ0bM4fuw/qun6V9Z+EPdmWvfy7HEJlXz0wT+PMP0wdlR1c0GKopv6Zn9jKRymGhjEc1R2uXaMLhhVo/sHT2YMRUOcgEDLf7Tn89k7B6d+jBTzsTseRCPk5g3Dg696KVP+dI192+K6FJURj+2QwVEncG6POh1eXylL7hsrq+GJgKbpFvub8U4ahCN8zjCsajXUJTa9exeezMmvmu86UoVu9PceHS145wcsJzoNvJilP+dCtQiaylY9fA9WqVXv+cK6T50GtbmSWv8ghT9/3shkyvYG9dvffvt23OFm87zvBA4C/2XYHJMH77ywooFH7ICCqbIyfNHvLxlefzjIek3QteMDbvThXzg/j4/HrR43A45CkbNKE89m0+mhfc/f0Ocr0it0F7Ccx8KQWOQcXweVxUXhxSwDOPJ/PDmAwVhFvM3rd8wBk3Gif0ItuF2lmaR+BtvJr6ZumdQijaFVfFIV76tO8d3M4EpCzfi+jJJfD0I/Hcn8RPfn1WbVZZJMCRa4T68SQlQ4Q8vzHFHylgjMNavN7INBOnjU2B9m1gSvIl5pGdHL4UoznXktJpsD82j4oaNTDdBr4V8GuRf181N+tO8M1qHsfyO8cNWU/Uq0sNQvuGhyPWh7XzfFWf4a8Km6qKgBhZMDUAz4D7B3EtfEtaPVHT60FpZtSWCtH4TlLvdeNDkKaOmqUdPN5qbjBGsHjSHCCU1Syp8e1hHg12ElJ5OoHT8kRayqdZVBZX/Mpz/TO17dXJdu87ruNoExmz8ut7buX/sTUa9MFv0rHC+FYHjjBj8cMyd1ZPFd/XGkXYo+nDKdkaaKrYo30+w6VkT76o6+42pL72sFwNRwwbc6/8ZKO80ma59i5O9I4SKOS6EchyZxogsXYInebHXoN61m2Dvwhwc968r+N6Gzztf8ycnrF+j6dvhPHQp2ti8p4Qy9eI7MZEoU3EnPsaoRZ81uMmUYnIw7YYa1W0Og67gkgG1xJ6UdsS+OuWBVtgWqihkVbH1sBgp5Y6uGv4ER6JdxpG8GlGZ+KSvMjuOyDotD5r6z4XzjwA7JTZKqQkMuOP3H96S/VpHnsNwj2YJA0IRYU4JBbBGZ/ilebkwKMjTR6OL+L91vufD72Zx+LzjA/G2zVQ8mRvjv7NL7thx7f8dXYj3mgGnyrjD7zgc4OebZWNqgSygAIBRY0r+uaLjs68mowO7AiuCk1BuPET55ZClliIfZUL8REnl3Alb0YwljZK6EKIke9orVkK2B+ibHvcXT275Qyps/2eLqqAx62ipJfMlhCHCbUFob1Dc3NwZUX6y6JpkMNHbJx4BVOcw+D4yUes/D/LEiKWOScW2c8P1FbdSq4mauuJVSVZ+GqI8azZOhDsdFAgGCNnurNVRWXFaPoT6jlsRuAhntMKfhT987K5Vy68eTCF+MZLFEGplEJzvFLL0G3Dyormzn0cnEzp6r+AVZ14YZ8m97X6KH/aLJv5JlGSNI1om0OdLZc7gznth+gf4WiHlAl5Q7OBfLjw6wf3x8LTEBluosNa6HEFesZmHXYuqAP5VtwG6llTiXOBYLVwHqRVz8b6s5cjO9xYYQ6ChE+l3zl67suBwJKyfjLvIUiBd6vn8uB5JHLVlOA4TqviWZr3tyHznC7A9uPkcaD5KMshjaRIivoLcLpnqigjCSH6BbCb0IonPqj3Vjfu6k5S5waLoKjpYL2ogZtp4SQra2eEQv7XIKG+tdvfAaGlN++PGclTHgbI8MSBSGhoXz6SgyAfmGwQFD74z2UyiL7MzTAy08sBP2mCBpbcKAAAAA==:image/webp;base64,UklGRlBPAABXRUJQVlA4IERPAACQGwGdASrmAJABPikQh0KhoQlMZzgMAUJZ2rzHXniBA0JSY/U1P/bbyE8/+UntA8m9z/wDxZ8eP8frljH9uH6D7mfm1/ufWH+lP+D7hn6Xf4/+0/uZ/ePol/x/2399n9j/3n/D9g384/sH/D/w/vY/831a/771B/7j/gOtV9BL+T/4f0yP20+GT9vf2v9zP/H/+vPRPIJ84/hf9r+Wvn35yfh/8J+3H7xfVl+35N+0jU1+cfhb93/h/28/Jn73/13/g8MfmV/xfKB9hH5T/Sf9b/ev26/J/62ftP2l7+PZ/9//4vUR9qvuX/C/Lb/QfFj9p/1f8t+5Pvj9l//J7gv89/r3++/NX/B/RP/U8QL8n/y/YC/oP98/5H+T/cn/S/Kv/zf6/95v9r72vqn/w/6j96f8r9h/87/tf+3/xX7q/4//+f8X71vaT+4/su/rj/yf3sMogJrStBOZlxiiSbsPSof8G3JiLcsq+JPq+hYGS0fy6GYiuSYn/fuM8BTGTZ6MEnIh6bAIXoZPtmbPu7FQ04TibF9RPxROIBU6ySJAqhcqVSm4Xw2EEJrrXkKZ5q0OEegHHisUFM3HIsG50sAIEw9NcfTQgXAmDr/hqGtUaJ71FoxUEzKN4tMtZzlHzTcMLGEumbkA2eNrXdUIcefY8mo3BsDVzdrzndsSVyaYgv/Sk9Hub3xDNqI3YsP07Zfap07V2IYWZAKyi9f53H38xdJ/0ZgOCNyypaGwIb0MCTxoWPysnKTaH0YRPGjztgvS2GH+/LzlpYsu7nPzTlGXjiD4q+ezf6FInw9GW88//RcvqIis8M8ZJl4oQ/ps2aCYy7DHEthHH7URxXzO8+/Mq44QeLgGRTmGsIN/i+SGx5cth3epj+t3PP/XdLFa7VHBhm2qv3Q+afgGGfp4x9kZ4/UnkuZBoZocLuwoS9Qfk0UswFcdp/kPYWxc6zESFiIY0c+8dMpv3IzWa+iAGAbQAwEU4zP3nFXnYrGTccqLzvxfaYlk9d2cgFYsKK+VoqyGdU9lsKIiQRy7Z6gBBC0FzYI8WejLL4Zg8WeTGsmNFdWHP56J4AlCAkbLGrF6yqrHPu67pjvSHVSx4RdmDBKgJGxPYGbXyPJlBfXd8p8TdgasQJfL0ug4SW5tATeTweE/bOjaHPci8rgJL7BMDmGoB+BN/t/4m40SZ03tdE5NPirEG5p1Lm+pY7SdrOO96QAHmRJHZjnNea15jz0AyRwyCXtgHBkCPDe5IE1tucE/fCnJBjhjSUsik46mjCg/Na6dp19NV9jXHpWVDlAxnehm78+CyaSoh58p2kvd8L+fKMW9OC6iMlGU5DeyDz4IbKTTbfYnpL9kaWgkeXxz9Eidi3gNyzpS6vdLXFiOI4i7Q8+6f5bQfnSrm4Wub+Q8gzPmLw8TJxlt29zmx3AIhwkDjqVP0D4VcG4ZiEuosTY3+bwzNfkv5SILWDSKYWczi2BRzun70UTbkWnkf59o+DECj1Udx2167H7xx5P13LrggfrrdP1j9PM4UlijrxJJ8SM+0AblVikx2CyFEbScRlxiPdlP6MbJnbbsPFxNN9tNs375xbcoVcnHlxiazNUTEQpRVEu2hO9iUjFPMvf9c4ffMYa9kGe4yqPYtIcDSBlo2U5gJ0poK4oVPT3IrhcDW7KOEU44GWMYAfPfe71yX2hGhX2+YIv8c84fBAkfNfXz3sbUeDKi+IqyMU2TkEbgQIo/iAbXScR6WdTURk+/jCJRjTCkCp3CEZHYqROW+/ztCkzPVaj/GY2I8s47bznFwYlGwUbzEzC3/9AWHEmZcRGPE3lXqTYsr1J9ISW9TgScWh/3uJVvx6v3D0xSOdIHX2mB9xljrfD60GLcqihliy/bdvbKcDLMqotgjPxwzDBegbwbyqv6ZYncItVN6PX4T6yUokzJr3nH0qQ4f1NELCOlFHn3823aLDbj/LoLOjGi4eunUJtTpO8k2nZ2UZXn51TyotnSnt7VIoHlmC7Ps1PD6oacM5EV0eQkAkfEBJX61TMrEqRu5zdI75Vt0Kb/REcZ4RaHsq7SYDLZ7CxmZiPLNKNkxK71IBZZNjTocLYrXeN+d8CU/DZG8Hv/PgrJVFPPzwsPQNwwry4L1LUydT+deCreb2W045LDSMp//C/HGV3BXHdm3PQITWqVyYcCInDxu28nn9rIykZPrmIOPFOGD48mNn4sDrQF4wfgZF4f/sx4NUSgGDOrw23SLcmYS67gkf4WhPDjzWeF2S6+g1y9AbjFHnZu6Fovok4fjPww5mfZSbIRXMpS/5ZkCbkN/skSfJ0zr9Rr838cw2tSIqwAh1+oN/rItcde46MBHOXMv7q3T7pb0BtmgOCn8y7I4RYWbWGBYl4Jfss84/hSOCrdLMJGhjrzFYzrx5BRUOB8dNI6cNs4G5ytLfM4XDLelgT9tjoYRyqsoEL0ChzjMexpBT3y+B0NTCcQE6HdeJtaEuDYyo7KigXnWmrhg5HGZfF6QZt9llJJ0s80ZHedutY8dR+sQIHNpaGe8pF4pPunUpBkmWkbseaeemhWlTn6X9Z5NUklUT6lwt1dIOSCmA7JevZdGOYNtU554kRSl6RdvyaORdtWUXx3f2Rk6NHTCUlTrFez95E1zsIresU0gUfcMXgBF7H25M59bBSkGm52rL/lX4+OwWGcPhTDkxfMlbVOwiO2GqHigDsjoFNc0DTonJGwV8B2CGORB+FbSxZ/RnJzOL7WYuYbTXmLKVFFHeLKdB3T0Ly2MUAWVm57VkI/VJQJS2TloWvHb5DHo+cxJOMx1OEhUUwFmGQs+BiKCzQrGSkzqR3pdIfwrdSCP/tOl/FKqQ7ConHpPf99uNIx2Tjs803Fe4jDar1hPEfePgLjSgwfo3VWuXoURCsdAkO+H2S2RdLjY1XpnS8+EFXF/ONbZ60Rd8R1OKXDO/h+d71dgSbkhLIqG7DsCpP//oGIwTObRPOW1nB0c0xm8GBi8Qy5SVVEITfXs/2HGhzHrjvHE4etwZzf/vJ7oPL+r3eUNfVGLAAA/v/y5AU0z9sE3/uXv3cd10WoDZyR8FGc1+KpuRE4B4xzPGnE8VUuQOzBehjIYzghcfrnU6lZ+9SZgR8BhTuNt6iwxCdpWD/dUkfEml6YLI8ayYaAQSaZXiItUKDJoy5FLZvo/pq5a+YswywXo8csc7XwrX+F7cf8C/XGm1ps07cpReR25/h0R4vc8Q7PSE5PdzF3Br+CRLbE+uvV1k1whP7DsU4Vj/mx7oSRm3tDfuH7OIYG9FM4gPBc3DjEPFCWV2sYvHJBvpYeIMjZ68SObijH3xsAvO8rjJ4BW9/C3zjjrV6BlUzigl7P0LzkWBtr7ascGT+jQvj+OaTudyBWEUY/hPca2YHIZzDtWeUTipvtK3HljQ+RL0oketcrnEIGR3bWnE1iZtIw4m3s9F3u8mS2GbCCwtVa/rdo4XF6cRr12rxKpK11VhajUhHFsHm57nCjizPWPWkR6kYoRuZE72/9yQzFFDLd9dJh2kFPmXzQDQmqpFkrEwGJrWYmPGSmURHPw/1HDzejDSeA8Wtt4ReRSAaKf8VnR/ZGWd5Y3tCftmbKsVhJhqXYP9isjCQpDT7LPG05Zre/IbXS4MdPbUZOxAwBnKCGvjD4unHicAEpXIf1/XqPVKx1wpyzOKa87qKhMKGfqcnVruYANSe3LVRZFYGn1vqwfSwUi86vpHvGPQn2TmBLOGx2DoRkECLwIm0ElW2HtFSs3afmUKmUQBFXpkQtp4npwLl/msFtj4rcWBxdQZ+yp7xObpUnJAcxs96tdw33N1K1s7czpaT1hyEuVAtbfUOcVe81fuftSs9+UvhC6+y/nhmy1YY4CZf7s481OoLFV8EdLEpnyD5zz1hnTJoTNISlR5Y2Rn7LOX5rrd97LWxY4T9IJjp2IAq58WeFo6No6fs0YR+FLgQ/fGbO25I7AMfkxBznx/Wl0NtQ1Bgb8N9gTRUWG/KqKq+chTVCcEgQLwalwj64n41sB0aKGRSUZ4BKDRarIRktjQH1W+7dkbQ/8NgfRlVib1fjtjjalPSqyswo+Hi1p9F+75KcgQ5+83jUi+J2OD5jwXEdDCs4mz8L5dRjbPhoykPcjDoNFCkR/yIaDdBzfQTbdPMPQNGCzuRWYeMcfL/wZOWxEePcAy/qEE1NO8exbQb6ZqXh1x98xm7p6jkrXn+lmNqlue3plfCJc/IxNnbijftw2XcH4VyKK0ntFJd/AGfMx8NT1Q9ohgnQ5YB2P1kKJDGV5yvg06+1Dn/poc7/yP9/jelLdMwDouCzyUA3pLQwSugmQkWxP/wmm8i9VPQGPJIDSvZcVMGW1mGrrR/SA6XlBnYsyO8j7aW4w36xON27IWQPLM85YBfh+/lgnoT3eNjzF0+gIXpz7oRTg9oT4ZWd8Eqokmhhdn/B8OUd6on8iZtxYBDv3KTlHUy6wQl5QDI65VkszzBzqeT1vivdt6+J3Ri+iT55fR2mGi0n1d3VblyCnj6j+zfw0T9A7Zw6EnQZHqADcint3uUBCJ6hdYnvszc99itFPeucdP7/ebnq7ZBORkQ6JzteeRp5LM5tlBGIHaAMyRzt7Ng/ihy6k97aj8nJRXdjjfz6ObfDvptA8UHeLZQtJgKV4Mz2VL/7XDTEqdvv/30JFxnNVK2Zth7kQf08BEg/zcTqhDU1uwEtbv05UEsvVsH6yuYlWwdzSHkk82OpdQcMFBEiqmNoXna+p0NPq14DFYO5+fI8n5ui25XNz23b/z+sah63V1MnEFvlRfqAHeIFX+ArDYrXjW2BKQrMOriqYu8h6w/N64OgSgF+Rt/G+44H8PyhpPjBwGsSbWLBOiaVWMbp6WlR1hoptUeNQ6vtL/5ISfMOORHeMJNnkJNmn86znCmzsT0PY/Pb4DgWcwl/5CIRRLQVcTM9l13l7XAfV/cFNclfF5Brq/E1RWWE7p/W0DjI73kp1X46MHifaCPdMSJh8Zww+M9vcIanZgJOLfpiEMP98v/2PrE/06+QX0wzakVr1EMZPXEMlERGJG8jhC3CbOmsLr+j6DiAZxtIf0iBlC5ZNpyHujoBr76X25VqkuL91gSr1t8+zln062Osydq8FKDlspTnVyTqPT+vK0M2qg13YTe8wMsyfKU15wUKRnU2Gr3zhx74vnwSFyQsrHXq64p4vySevrU/WOugSFummhAr1aCWJbn53qXNl5Mwkpti2vsiJi3x7uCbTNDc1wxfEkMVd33oTGmcXuUZjszh7ZH7QOceDwoARakD3riBaCC+cE0G585yZbQyo00SUfo3/cy5IKGH6L+CUhjAoEyceBo1m8YMaWNOtUAs8wXVY/diXCPRGNe8Gmq5srJISs7PUPb4WRYXL+uF7Mq95zkcHsdbqY1sFh4Xoejfqg0Ad1gtmALIhYpI+OeOf8ybErSIaIuJvuO5sYNJp7UGHdF1nYEI+qdXnxUq9Uu7mUkN8Ov7yff+MPjTcmD/XULPe4gEmwqf8fahbMXobYyK2I33GD/7xOiUrNLQBC+M7xS6pRAwvQtlDrxMY8FoLB6/5SLT8YhypTuMCmdAH/OAovumF5CM14Wa1e+X2twHkAEqVHW3+deMXmOhRIhFhc+AUO006pRy9sUjku4Bu+38f1mI5IBgQCQ6Y3RKXXnfAasObxBjBDIahKiR9+m9rgQJ0qZwSi1H9kcvWpsNbV1zmbc/w0BQEydEXZrwcIillE6ClwAwz7VCMlYqreb5SEQ7jEE+gdJ59RsKBjzwcMyTdjTk1i4aUNf0aejwy9NE+z9D+zqV76FntjRlqDI17I0/GF/aToE493+P6XwHgOLdNXqtrvRholqJIn3ilBzoA40pCgWkE4rzfSBD5gZY8DSoJ6KrbQBBgagPMNZKn3HZX9Ak6luAUM/Vr0PDF8P5VwVKrrQZ8WpZs1ZKW3urxER5n7kyh73/4HOEJ8H/G3BVBeijZQJ0yAZKr73qJ4h6cTtygXd2Wfv0xED3Ndlki001HOghGk6X6K9BMY9TYjz6D7rLqY2WSS7y3ogrbUqPDW+ouHqDQMPK2eLL5XSZO9u6kCZwSwonhmIr11AI7USriNtQ4CVyLUxzl6FcfcXWdTbCtoTST1eYmNuzmL+qfNniWUMijYT/TqV8ZDBDC+A7NPWn6KbSZKM51RJLe440gpBWeKeuS7BC08C+4YaJSCd1cKVfdRl4oTWnBJRWYmy3Y/f3QjdvxEG1LIbLK0UPKvdr3Mh4KMwd4XuQzhHzMvtxiYwCn+EJLLtyf5+cfYks56CtWs8Nsu+k2PkO0J03pNs3DrRqUcz7uZC+e7717lcOrRIAy0nCTnH46zvTbr3rvrPVU7yGZojs5hRvvivLx0vJVHgydaG84hIT0VHnse6xopPri6K9b96OygTSmjB1yZYUh9/EJbP+O/cgxGzvcW+37UVeOe9EMQU9GyesokIc5ECocPidrauDR7iRgUJ0UfpHHx/X0/D/mxdpBk9NciLb0I29uC8Q2QilutWkX++HXAaZooii8P808FkGGK0BQdexTMIbckIC2tSy2S6IpM2ZWZJ8BIn4UezzidNJX5Tna4IILOW4LTBSVeAjSP4wPDKal+N1vXTBoyl4cX2Ej3aMJCMUNIwaLY9Q5RK+vrogwYId71kl3vFIL0iFy4P2klRpwtIs6MYjFxZREIEhFOJjOw4R3TdxpVosf/IX6EfhjFBatgFAI+cj+XFxvtgoZMhqH0KdIJZ6LecWolMRseUGYCOwuXMYuZ5WDM0LJ9rqYgCVN5f2Z9bbTUiM7+dsNEbTENAhumi/7aukNfk/AJDEIpTH2RjKfgxBCJN1f6/znbnSac98dgh/8iTe0VgSaSzy+AA1uiIaggd1PlX8O7xCE37NFzdjy9LwZN4PFa4IBMYKY4+yqzn7M2tlk8ko4xzYL5ZAbh764XgUgQeyiz4gtb7Zt3Uxq7Ni59LFOqTqnKlC1Sfy7tQ053Hi0XwLF3bp9morI/NsMNx17ruSOLR1OELoWkPUzPx0LVgIZub6WYGK3yXewvZi8IbpYBRWlM6HKRAYgrSC9DVYwmA5+QWi8/lXEaiQWL/bZNHG5JFC8+Aaxx8fbP+WzFtQNOWpsY3A071Yvn7QFe6XQVzBuQTyRt0t0Zp4KeBty3g0B6DzmFqihneezT/0Wf9ZMozSF5fvLud+M/QMaHRisDdNp5+1kHuyinacCJSvdLjNhSA2VrYtw4NuPVyUcPtCLaWSF4IUkWGECfJHsDD9ihu0uclImReTJXIpEebZMOiBL1rws1gIz9epmmQuVAw56sPBjUoWy16hvIQU98uujtpuXxm3fGc3Jk6JNC+wcIE+vVqa/+YgMcANZYLQTwEIIMdrO3/gyW+t6IYGeHdAxCRyK0yhtEfrDumMvQVocPP6CgFO9uNRhvMNUO+vqRnBLVBYIiWDTPjiHXlMalFKTabgzKKwyw7NvRj7l0YIAW0z7g11KgA8nb9NHDENJaV9ZupXYo9P0K8JMCtABD0aCYZ90HZ2PGq4svAxzwpBnIbqb2lAzUfqb+jV6nQMdIPzwV4ehHbRcsvlBBcXHjnktHfA6gEjIvh0bmKUFtv5+AEoHvoTyyWwDS9ogkfncQ7wsZeaJ9MEq13dR95UORLV/yikBELylvzshq2KcJWSAyN+UnznnATZoQc/9+jxK0ENwlRofJofd/UHwosm1/zx5++RQuD6LuMIU+w0QsEmL1tf8or4ezjtlZQIGlduiGAeRoxIl3jBvl+rVX2LbKvLyob1CgOM27PieLSFPntCMKndSj6tOn5dyiuynQX3UkJhAXzpBRggGU582wUNfJpiGsfyRr/7N0KCIJUr0zs3GJZ8I8a2LKRWg5bowZgkiwADXuW/0Ivl+NcUgLqEYDAJEqlEv7z0/0sXG0rKsop68Iv5uauhYS1TNj+VuSsaPjUfvrC5ckYWGDVzmprlaP4scfL/2AUCnGPCAiuLxdCk3w7ox4hdhhhOS6rFQ5xlt3Bpxan7N6OV1OIDLQUHcPQZD8tjAA0ZXu/9RfS9NMHWdb8+q3YE2EOXuF3w67PfPneZqaLjP7Qs12HWX5O7pT30LKph3BwWtwCTR+WutN8Ywp7lEeSXnLlSwNO7okTJMUhoX211RsnAHg1d2fheafRma/+pooTSoKy8vuQys0X6/Dg6hJgqcY+8AMcUs3JfXGj82W3zHpQ27rdIp+t3nPHsbZgImWEvqGHnB68eiBBDIWBolLvwzhRFH0N/qOI0ScEnYTqj8B/9M+5jUekfzPKBpuoQUGZT6V4Cj0fWTrJ6p1/+RHbBWaduqiqrSVTYUz61H7mDHwqrohL4ZiQZZkTPSjiKazAMupPdTtYyZG79VxqAAIq7Lb8yJY1uHXaiEPpEDjRFTvG1APcZxFS0mTeWN1lDzQcIGxTNoxURjGpzST/xovhsEP8IvMQ+mfRbB8l+WYcvMk7wtyq+OppJ19AmvesKL0wZiGO56P+lyODePTolWDI9F1FrbfhkkBUZ9tqLlh66CbmKO2oZjD/G2ACsbVXyt+HwK+v8SXTFfDBrmKR/ZsRkgqGFM2hTZFx5+hLpmwQKat4UL/VXLjEIuCZuSObz4V8Fkq+KojHPnoItU1WqigS+ohhZucVu4ApwY9eLEHibwIsQN5if3Hlw1fxjqGby5rI5Uap4Ce5ZRbSeWhIRs7L3tDS6sbucAHd1j2xei1mWNc4PgKsgozgg76Ri7EHbkKHw54UQjsZaaLLR8xxrpx5i1i3cgLdqP0cD+i9BvR9lb6BnQLJLTvqYODmcAENxczo/llxR4WgIcx/kCGWGFXuWRMOtbi2Tl9DXJ7L/DVhbFKcRvQG2DIWOLCA8d31z+LC0f+XlNhNqiSq52KrvzvcvSnYo0I5aQNO331+2o11kJNPj1NfjOkSHrtoF/0+APYtjPaVpnh7rHe/z3J7Q28GkiFJWzPXZWD7zl0PYSQShT/cdbIxWKOCDsyl74d8KG5aiONjqxqtl92J53M3t+FbZ5XZ3TV863Tw8AwgWeWazAUdtFeQvL3tyLgb7DTYnZrWfNrm7FP12khRbOTs1FRIHLDdE/ARI+x2wCVbR9LycizEVADabDU9rmWWkM5vh6oEoCF2MSbkzjkN+loI71X/foAjprdruS4yxwOqSJ4F+pTQiK+fqtwgXZ0OY2QbGxpWASoTCFYTLmlDxSMKERisH61XsXrs8om1pAsPn+D2ZLS7Ju6YJUq4vtVocF9LdsHiAT/meuTShhcu1gNJouQhq2VpZ0ZQbVnq/PTu5m/B610ajBPnIX9tQcjwk8kTbgiKUYCOeJYMeoffHfTX08oJ/33CVI+sJrYjAyhS1qZnN0atL0BkFQHTeosaiJJqxFipdFQ23HhyyAR9H0b5MHLc1wbBENXq+LlVs8p2fnhfe8MJDy88Vap2JqfaUFO7buUZg6rFqJjscgQNzsEP11mfNr+EnLyYs95NAEqQwetiI6g+ZSOwRkOkAqaZUi+a6nqFm1Oh+9vDiDyYZyvhtRl3S20FmqiCh6AhtVYvq4LvfqTtUOKNG5vbncIO6Iwjk9bi++A7vWH3me74l4qbf+BVsZl/FxZoxzlpmcsJV0Wz/GWPRIjpxN0x6XQSa/vvGUiJ3JYm+0qkriKqgMRTYtxI40jcgXs0b+L6wyynWZ9H/8PFbrdosuL2BvOQVRobKxNF3npuFh+ZeqzE3IKg8MxBZhe9ytIC0cnI6Khqf0DhKHqqfWDkp3+CPy/8y079fx+GBYS1RjuT1QmuY2nS+gzHa36aLD+E8C1saYcvW5ixWyBuWIRxZZiQU2I8Y5Otw98Fz0MDE06P+aahl3MUldM2pDmebpTHMV+8oYtTPG56P+0ew0kqFhetaYDfaNwdlRk9ewFpIzrhaJy8fI+3jV5p7SYgtNx088yU29ujsged33uN0KWJn1K9k0xPSqw/gSFcgodmL82soO+eJA7X1lh6velgWeqTjGh5F6Rm/d0DUwBUqowZwGYlD2K3QJ47SPMZTXbLxMq0G58o5bfW5tJEII/AZZV0gHwPq4FNQJrff/hA0t24tyae7mKOzSRubVQ8LoKV+1/862Qg4K5csNxgJnnTkbIBvA3xD6G0GEMV9UI8eOGUtlCJyKlZzJoz3bGwRKh5EbtKz3MTiXeXficA6m4/aTW1n7tYkTSwvI4YVWdSmYqNuQXcZ4HERQIVhndr99bTPBJ/QygHlLrZwYAiseIXKOJPxdP9gJSThBpxCMQSTXvd8zUACn2XeKMey7cJ1hh+AKlT5o1IpDcmpQ0SAcW21JZOYzIKHez6UPcdpN1f7epMU3gQQ6XWtH635e98TqyIdPdEo493CvgMWZA1MzOOC5A0ywh85hB256LQ2fXdY81MkGR4QVRmlXK7r8p4UO7CcZvoHYPDa4rRZgJWkpyi4MK1t2aLLagNcrzwKkOPjAlZsyakqXQC5rfE2DI/S23EQ8NmM0HN79MpbB3nQbIMIw1oCxredmTsS4VIt24vlY6b3Goo7+8RzX4QixP9dupIQOtmI9ONkAZlVF3Em3ith2x/qzk4+6Igj9cNyGJI7gJcNpJoZF0oQ/sJ3ub7yaTqybZXtOnR/7R0vyjQhzilPt5rEvIYAx1nJjiSCVC9NRyMurmaMWlwGGu9gs8kZ9I7T9nXxjXWPflqSO64BPvFyrlxFQjLBzdpAXGpV/rlRevY1rpgL++lxkovQo839M/LyQVs9+bMowMs5+sMKKaNu1ZSGBPYrOXlYF6iIVpKPtztF0hEZi9GHXQRdQFKPM0KQRdTNZuU+rEDHLEACvZbAqaxmpqwlaE2ufmlaaXqSIUpf9bQqBa4zhE6dejR8HgrQnzJvJDj496Bs1GkAdb6xGWAvs9ZZGDiQKJZsRVw0QTQbgZNaoiKPIsxk7+fMaateMjzzic2qZTf2050nxy2RoBLfEVCHhp8UrAKnJ+ktnLzW2XEI+hbBz2/1W+9mSapUWuN0D5vKP67KBZNBojEX00xmVAqmdWeahlTcuvoMXJXzcmiETICDC/UI0nomsR4zCYnPu3qVTZY4ROeRkUhqKuEn+KA9JpfnrDA+r2MwSnCKshaXmN+oKdH+1sYPl4oW/SBZ0mfXPvEE1o7iPCWND3wWxeL5cB6iYsea9xU4+tx+XUx1EtSyMKjtQIO7/hoFeZkDxCN4xY5qPZodrOXNj6kW5D7pNWe0ComHQcIWSmYnvkDmgavy/SPYPzcXzoSbg7ZLVvTnY6+0NyXHoUVOcNkVswle4/iZ9kU0P6665q1up7akO8Usku4teI9NIl8OQWeXO3fqaWnU5Fao+vfMphOZSI+GR/9iYMOiFKUiKcl0bJW+qaoyNFFF5ngFB07mC0q9K3X6liQBbUxQuGDKEDdbUBBq+M6ubOG+9qjkP94NEYkOA7Rt7eOOcLXZncerip4SVw9+tL+tKHtCNSSZtpjJtHhtzN1pj84BDLkoNa6J3y/MSoju7cXDGdfypOZftyQ61kOaThddAugY6T9046YOxPiQ4dHUTXjNg8hEJFMCmf3gv1H3ME7xZDI3zQOC9BrinpLyI8vLrN0PNZKq932MAGwxHcCWXMaCGTgN7u8dX+qpH12Vm2hHyW+aq3Q0UdD1SlYWFAXBervqS7O1lT/CVIdoZbfZVa/CTKbPIpZBJB0nPKUlhPPAEz+rKBryOKfE70kd12aS3hlTRaWV/kCoXsI2ZroOgsPlkj/Dn9QnL8oeAHCBwCP4Ece8/h4/kv/0MZL7nXXVI5u+I7AbUrfOvIaYtPR3zCyOpawKpvhu1Zqg4L+T1es52y0mk7XDRQ8KXXUByeNt2h2rzAwKm6q8MG4adOojjp9+abqQx7hGsNTOZNslLBQe9t11V66IDSzbOd5PPeqdRixMwDrrIAJwXEIbwLHMHXNGA5+LVRnLLDs3MJFjI/y4TWJ0fXoVaQLH3Y8Y8dUrwvAyHK1CZvvzghpaSAkTN9V6pmboOd7tgGPqKAKsVkKLjngEIcLv00x6oV7fdwWmT9Hy2+u0w+kcZ3PDMc5oUTMnK2FOUhbHygnB2yX0rOw4UQ5NAZCB4f4ZarozLIAEmCQ42j70cPwZa6S8fZCANhWaJCb7uA8KeJ1T653V5AOXlIwLjmcAbK+xs/zHDO87X64lxJ+LWzNDHd2Grf79Kzey2GIariW6MBLSBh7D4y49Bkfi14/htiWoA3m4Mz1SmpMpVWOrJ20FCDFZxj5B4b2RukMVWzsi0Fu7bh5BTW6keUDs6NdwE9xQiDVVRVz1KFH9ux+C/LdjVTUishBx7NZL9ZQxhvewbxz6uI95q7eFCgOcD5AQxvlWOtK4eakJXTso5EvsXCg48HaOQjq3KHv/sf+1/J+E8b5r+vKOrCvzBeTn7fEGannGgB7SympVRiVXEZwXbLmrWfFwSv6zUsLaXW/72Cp4rYfKfXTJHGn5blhmeFLk1CX+QZWcqpm3D23Q0hFTzbcKwPhm8g+EgXHZf87RfB7FZQnJY/Z60GwcWoFdpQ8HO3thWtCy4slTf6O9qHJOy1E+lgjtDQLAsRr8lLuXGeJjg4Kql86XFrRvZl0wKAqQ0ZpvypEL/OwgSh+C6HCEySR3tY4xs3rsPHVLE8/QO9NORy/3Ciqdh+Vkji2Gq7EtQCEAYNXwbwB3yi8ZVWlaRPwQ9KuVU9w3dOF/xq060pUWMeWgUW/PrtRkVhZgABi3GRCHnkLpMdudpch29E6SEkYjhfVS9wFXsJsJ6s5LiKIYeVJzTa+JSlRQF5W8lcup5XrCXRcQCFvsHuUpk5jC2xWRPUZSsfTC5MLu327/6AUB71CGAuRSkLr3tTeEFs+/EdAjVWHG7IPNmj3ZrgZoQPGzV6rli4WdGCt3JrNj0MD4hCPumpxx/FAltJARvj+OBKfPBwy07nR4kYZoOIQixmE+HxOVQP9NFjV6L4Qb9DYf4OF8NF+kqHuier7tqzw8hzwei5MfwE/xA5xNKQEi6dcSZIPWw76bA5lPueGLG6ELTW9NvaHW46bZtSBz/3blTXjAc6JIyWTNqAXBLs+5G6h5+8SkCFoVI6KF7i8o/Inkx/82I0QkyRj/eiMr2FfKgi829z2BgeAflf3HH9NB2qEGuUOB6xm33VcYd/Bosbfvuva+D8gG2OjV5RTRzWqGGCKmf3T32fUc3JA2KVeJRigPd+Y9ac2IzeljR4AOd61w5nr6MACKK+JueUoTpTwCzEbVHHshET2rCw6QV4ELuXrdPFfVlN1kzNe84NLXIgUEFVTPadPLOvVvqHAmn7PtH4DHYRxh0Ub56yDAwIsgJaJaAUNWCzlnYhELCamer8Oy1ScA/egpn7qPoLI9dfx6Btqz/ENAQzzPiPDdYUB7HazhA55yG9Vspvk7KaC8yrxArVvmbxrlaVfShFr4DC8dxT78qnqx3sydsfhEHbsTrx8/opic23LJTfFgN8CjLkEybzKVzIPM6n0y9pLiDMpJUZgYRTzJTynbL684TTC1I+mIa1hCTciyL9Jojotkg2rOapGADKjlGa3eoCnXZfvB9i9kR2l39+tQ4z0Tc1ahwCI3DbEYKkx1ufuhoSF/N3bBpbCofkWz95nAiazoNLFnoi5Bm5H/Yg2bfTiaHZAJ/UliUNOgU37l0bwE8JgTDUVaOA8b0p5WCWf6ogmqHGbax3RsXlVb9WGJWHMoYSfWFuyAKBNbvlAltcrTcSYwILI9vdnYQWBM1xFJWU55qQjaQl8e3TgZgGAm6Cw1rWhfxabppJ8ZkfqKVq1QyYWdV9Uv38AhWSTbw5oWYh3ZyWnrw5ZEgNFCAQPSKu2unScVX2ncpt+skV4MqEB0+FYtd5Sm42YbUY+qxZnazLbTvxNqZhMbNKhs90msT9yT8cVBsjI3pgCa3YnscrCeRh4/fVmtQMkq5qLwCWI8ijYbF7tQXzIFepv5wNmd4umg9U4opi0cBYf3q/HBW2jv62epgr5xiYrRiJss0RmM6zLzmBFhPU1rjqRlJjmRFVXPHMIM/Vp0N+OM7/mqskSAtRkeCAk2+xPKUYBhVvmywycVAHdu2HeKBU0O9gN80a1Rqo0AA7DyU46QyJw0v3JH+4bIOxTv11tdalqHGv+IBtkamM9Py8eAtPYxQCI78NYnoWD/MW/FNKD2simWYYvpxQfenO0IoaNZw8/oGZXBQPkzLf73IfvKJEeTswcM2XkJatxgMYX1O2LVlLmP0JWW3ruw3WRwmgdpbfrDivKjolruGaGXbsDkNwrW7BGJTgjPViYrWTtPrpDcLxNOSUvPOnM0vtxJRLDxkXny9jd9UveuWuRIYjeSd34CXuUcckkw+GMJE3L5GlbPfjR3QiK3Q0KnIf8fWm9KMJkVvjT9DAn1OfR8p3I8Yfk+giot2qIwb3Eea6LNRTmdD1TwsCFiIsTw0RFkt+x/oKmeYRpS8Hvo3j60EooyPc74pTEy2qWBafxE9zl7B3I5eKZIK12PAUKW7n0jWgt1wncp2u8DvJ6S90umdhoqMaUQkFo+XrujrfhV+Rod0C8yvCn3ouzLLWeTCssTlFaBMl58iLYekcaBZE2d2OP6e/mhuMY7Icw+z2ApepgpmHfSeMgRQG4kzhyQhVekVPGI8rMjJU/JZEDqsxFyYEK+cPP8gI8GtrlHHQDvsucLwP3BiO+QEb+YwMleFANR2lSteyoHl8uaVGNM/yoqvIQy3FJ0eZDFoxCk4O6GHW8ojga88qwfaSvSXawjPQ39K23ZlSwXw+BlIrbS3wFoVZaQWNB/VUwEQp+a11Nr0/uL/rOKA4UrK8+/I9uV2Q95IODslCcT0ItKbXee+sW2Sffbstmwg+JywEzZsF51Y4hHgDMPsnaaZleDfflVoe0malkPyYVdnmDfL5gG3MseXSz8DEIngR8jvrb8tiGB/Y3DX7oMk13V7pAChcUKe53p5C2im+zso9/z1Qe3e2UTRFwKxsB4Lt8kqCuGNlXz3XinjWRZzA0P4uRTU4a0CZkWORZdhu621FvdUioZsC59nbpqCj/sISNovvStwtqFJf2KQ2plqNcGfbTbsEAwTlY6gXuWxayi40cfeDpfo+LEuaPhNE1KRV1npC/riSWBC/+H6kr4nDAV95uPnYmbRmQ6EKs/7ZCr+pxJ4IYur4p7rKpRoVjAV7cnqhzvHWlBLh60XyWB5YgaFNnCfYs3ScvWncrGlfQ0YxODmLMgzvEl8r3FHjhCYchMA74BifPdHKLQgUJnKDF5oIGL+Uq7qs8tWv5N5lZZGMbLK+XRr1FpR4gBc3xBFvwXj+/UDZUt6nazzF6KP0c2c2Yh1TfRlxjiZ51iXYzIo9SdS8wbGZQm5LqdDwk/mQlqDwaIrZEpDo1kvwivaWSsswRUlnRduF7372KKZfPyljosUiSDL6S5ARGCdjk/OUf130MmOYy+xRWKWFCZ6EPpMTE4Z4yrsq4WtFou595aujlBL9gWbDaMNzbKskuu/jSZdfQ3YWwMOfvXYZdPRK2jl91FGbbYTnB9hYP+vaOAi7IQAxlOW+H3R/kVtuhpv/3h+I/wqCNgAORDB6tL4kJcu4SiM4mhzV7d4W+6jSCZvK1czAg2TnXDiAX1i1YekZ6LRwhby/KcH9CmqgkEsBuoGGYGkhkjvIoqbqy7mjWbDzUky9VXDDQCP9SmRNCpUcjJhbjpDsmdCz1iynHzWCxMgM0bIbmXgQzxqhlET5zIFViPaBDxu35QQEKSh5Q+59oUROJJpdbYlcUd0tSM0LfBi8gvxHV0g2LzbedDo4u9+Qde14BAk85ksfp81TZeajkB2KydqvK5sM/1um36U5GCLzkeJ0kfSSlz+tKlY9s3iNOiuW+t7yLh2UYkcyKsg+9n0wzCRNrnxN/nVSStYCE4xTAguVUx8KjhCbwdWRgsSHl5DtawsZUnsE6domowKmGAqUHNo976PCr4WuzOAy7GtCV4d/n00Q3/JCaXpgKbNk29iRDOO0w7iZwkZkSa7f5YhDcTHNCueN0DFdjekSNnUC3IYor72pLkhNmV2mjgBX/tuz+LyegpdIdXhq1Z4wIPfgQVJVY2B4LLU4KGU7ttZgkf151m7Nzr/tR/IxHw19crH5DaA0VL4Gd617mGO+9IeK6ROLr7V3CXyxCfKXqsG09vcpjK8feWY6K9uFpfkJ375ELAYg5IPDH16WgI7oUyOuhuR0s9WowrilfM5HJA52uyes8yyVWYRzrvGkUOiNao7xAZk4uDCJ+s5q8Zu7njvspBPiIo6rj9FcBnaHiL+n1J7LX6if9nKNHQ1V9coa5G3qkPA2/7VsajZgN0AhIQf771wT0JLVQuEdfRcZY5YK15w3vF0iti2j/eHPPHUfcFX7vuD2xqba/bRCi6bBsg+2FoKetIgjezG+pmjVijgTervDtv4GqAAKteDY04F/wu21GyKfGFO8v9+YmuzkQ8IjW5+lIqUQb/Oz02f6T4F23+9+FS7J358HE6iYVWVVsze6RAxJ3aDgVDRWPyPu9kG3/JmQtycqqYCfo+ONI9xmjHk6OnOUcDYkSVE7ASjbUIaQ2Wg038h21dmoi4YoGjjhzQw2wU34NEqX09iY3MKhqmqcu29kytMrLRkRP7fyIZmJH6X6CCv2Og+Q81oxKrURREeEEgN2u75zTgm4yOkZF1TCaqGQt7FsoYpejd9chPnAIiZysps8LAX+rPOeuiDZh0noU9y7s2x6JleMQDSzdgVQZox06SHZgUXqWhTfmgQ+3p8TkUfprro/8BUbbbNYU5O31NehtM9ySuMmVOVvrX35jRktgZYTrGB7u11kiNLko06Le4CDtH2JrNxnfBEyOX4duAV2skwjc+MAk9kLP0yq97Uk5he10LwiOPFfsuGdwgGHGK0JaRDnSIg4tcFr/LuEaWalfY8Ojz0CtuaIt8seGcS3bO0WzkkxeO9dk99b//IyIv5hU/nvQfAp9hoiUz0fWauEUvOS3nKIhLqEpSuUq0HOrRztOj/tegNgZ5JgkIX/3bM9axqB5g+9+qliHUrw7wG1dmarNnjkZ1eDx6ihkEExlo0spjNrUwh1QTNkEfNPehEmpTIhugSyKM0XoKzbof1v7sJ8ag+fuNp1aL98Sg2lYkT0BEjR27funS0LYJ07fkke1hH9Wp9xg2XVElmlqTTFtIYTwHD4N8T6PNjzwPz4jMsRaPXhdU83/fOOWj1Cw0fGiNUaAI6Yd3oOEfK0veIROSeHxyA7uGn0+FemlFAEKHC5YsBYXtQU+BUiVwDdjrSsxME9Q9Ig0BpujKHS8HvBdE9oIiT3CIzL7ZmN2bZTmfShTASokYf3soj2B9e9h1JUu2cAFwU+vdH+HPo7A5bAU5p0j1TndirBVF42UnljqaMAxjROiQHDY716rCcv43PzO2XmVqUYFGhLkkEkBzI36pBQmcvgFdFXNG0lKv2cRKyzjn3+LeNZStMac045xIm8/xIx5owuFI7d0QAX8id+FRkMhIf/k1c2xoauDUMPRWF6WSK8eBS2K4kcIkBymrZnHquDteh3BO54MRaXbZYnkdhy++eGy8/Aa7/nUNQjxArJAOZxnTSZ5xito9dWZM/pbIHo507BQAB7fXcOqWqJpOyUm8dvi8R9dTulb35X86eMBYrUuS/0A/8XorL924bpMN9w25rG31MNUgEM996cTPxbZI0uZYuyDH8WRzZ902RXe9Qo7Gc7I+10JdMhXNG3jrqB6GS60wopcZykBvlp60M5VfC5JPPKJ3VLfed3+sZb0cNndkd9YccCI7XjR4HloP54vjFJadfxRzBllw7esZdEBi3PeVdTlM9DNbDcgxMySg8T5WZh6DmmtjWt4Ew4churwAaMBQUq218l4oEL5qKM0/usM68slqXVdnjSxV4bnEgr3BBEAbQqjo6Pi1iWbfGkW5QAA0QIWyDF0gl08Gs2V0V608y+edwJonlW2MhMkZeaj7PDsWzHSxUQFger45W5oy/HfaNL49HljgrH3MCjuUkRrLbjQRRTfv0Kxgp0xaPkVrURC6G/CpzPMJ6wCv4ym+qJd+b8VDLL+1RiS+N7O0AnIpM6yCK/BN5hcRNcEmgBR8mc7ql6SRqMoOl0cUABoQwVMkWCb96e2Wm6H3zZ08xmrTqS2qIbnbvs54tzBJOJNTg3wJS8AeZPk3jiFv0Xl5DgIlMyZhiujBpeBscKvPMKVKaRQfyKu5gD2VohvsGVr/tYHNpqulyV6CKDgbpiT5Z2LUwJz0ryFaq5TImClcFTAXTr173ADbX+kr/rzuSYPO/olpIMHwHibUh3/okQzETM+Z/XLl0ivne9wDOAtlUEoOgSt8WlQ5TkJN8bIm6mah9fEtFAkUgI9vCPakZUSJLqWbur5be0ejhOWWZEYcxF3UmoB3K+wHxE6rqHkmzTJ0IxGjmXZyrMZH1VHJiHnJQd6rYytlEQc9rmnm6K/Eva0cFG+prR79Ryx9oP+/fY7CFpx33M4IvDpDt+4t/1BMjIeDie90qkKnVj82pmozYYhFFvLyjqoPzMcTa/GvN05xpkZnsAcrAZt5mcc0Rd1RaprnuWWlL0DZTqIoACICVOAiB1z7LJnIIfGRSRnWfHsXKtuYE3UCYxOikCJXIjZpwq6poTwOXdLE6GWdiU+t5s1qeUk2XhSayAAVrgJtbbwoTvBoWyqbphcUsXgtxiRM5F82XEypfTj0efS+Y5m3SsbIbCIsR+w/AuqU9nigLDh0lNOMA/CfMxt1ETWvZmqhn7GorjI2OEWAmdeKJg9ltcZsLQsK+FMirAXOG7Gm8n4F2E73k3VRQBovkXMrQev0R0hvRc48tClxMuodCghOipjDhvFQ+XtKY+ESRh2q696NAdBYUKHfYbKGjzN+TD99bLuGadiPTD6y4jFyqsAm8/4Jn9fEiiz5ZzUNhRiMbqS8f3hsG+1pLha/7uhznpe5rKAWPykMTQVX+nQ5aepLaeII3fTkLq3AR33cK6i5VzL56vgh/9h3hIASk9mbS3+6Ik4qC8ni6z4GzM7e4RGK4hIwiowbbZyZVpSEWNqEyjinDbwRBM3T9fCAqhagGB1IqhVx+MnL76VVQdwzhHIpMfOJtE+5cvATQ8h/Rufe9n1qUryowFcn0lCtkNYcRraRK/3XLpnqCG6Y+/sNIaoq0wglJ+/1hgJ8BkFmVZ8CKD+ch1tsDhtY93/w20t70YwzzmYuvLv0nFdfT/wax8cfrKar5UZLjg8L0XmhAFFmk7qYGlQw0MvSevCieGk5IhMM5aL6QkkDIV19RdV51lbelS6lieH7xdiBd5lwmylWxykLvgBS++sWR5MlIIwio/47Zr+TdV5NwK7NjPiBcMxHv4g+veYhNItj+ufwLY+Jyj1RWH23fSdFXz5IZ4k2THCiaULSpwWy4RvXd2vJq7ltRNv0uS5XYK4HtV1o0nMkDJfWfm7Pw/EPv2Madi7YxtTDXxVuJcTbFyolHXc8uvVwU9GxpXu7in7l8QACZuv9tFm4faCmiG66i/xAfQdABo6AvrauALv+8XB5Nfnb12vEKEk/AJ3uBgTDFDh3YzOtug0V23sCpuPCqghJcJraPGro8gITPA5sS9h9zXwh1owNL+TCRrYX74NHpiDmG33mswXpVUppv/qEnOM3ontqVIbZuECns+ayIk8mWO0jo/V0BK21SymY6YeLbMWXTEUpOx4Zn+vMJPSULxnM26g+VrocwLN+QOPbEmSKCxkmxpgUnh1qD38oN1jYhkgGyc22mHP2Vi+5lTs+XzQJIJPhZvjGhnQrGEBjncP43cucXha+VltL/Pp8LsYASyvMOqdIYlzPBH4XCidqhrwTX2I2A6Qx31b4ZAGYw+vCs8Ih14iZoHlD3ydgj/a1W6S3GWW9SAbgpTILKRys6G7koolmAcWtW+Q0bBDwco6cUZcBuCHr+sUyf8W79YHxvFfDFkYR/ZcR2I2YaZ/hM1F3B9aCKR+CJh5kGD/gTFQ3K11C3BAOijqCxW9kO8L4KeJp4Yxq/h57+bn9AqDBGNEeppmyEhxVJwqOXEs3PzbgwZV7G0TmrI4Dom462L+KUoiX67pw1MhsipFT0URKqYotjYu8oItoz4FzH4Aw3SAFVOkZE46wF8tXMzbBhn3lRfuMBmwniqrhJm5cDerWhlSvidbYEA3vI6dzhQBIC5LGE2oYnwN6SiHou8qLFO+SyUzTV15RnUKjUFKbpAejl9z01GjJP8R33FalFCn8AR+dD1l/8P11dkVSUyrqCPd3S60LNfBc+zkBsUjaVDuauUp9jMgdUdIpGI0V7+Uk9cPj9DifxM6uyn0RKZnpYvSkadNDbeA8fjurMkN1/sUG3IQn/qpPgqc8CxVQqd7MY0s5j9MI1p/peVafK5u5pdYcN5n5b5wo6HyqnDjupRDXe8Yd+VrVIb5bxf30aQsdsboXB2B9SXNzflRK/24dGK9sZU8ipCu1b2LLdaucepZNt9skiaEUhLr1SqzAUJCHkRcyZzqQ745+9xPqkKgnfh9Nj6Fc/oEtY9FU3bGWSHVhJc5FHn6UPqgCt1gz5pTt8BHugDjGSIK0W88Xy/ubpOLYT0DOOHJQHFNJYP1MHhf+PkDidTIvqNIFSb6Qkidp1L/+/ZIkifSauoHxZx+izgQnHsgf6WxNPlM/vuYvExUMG/9CXh9Yl/IxTEC85rBW39jFiTyr8riRFRXUXKcBrVJzAXR+X2Y/6s5FXskBMS5vLjkgY1ghi04SWvh6x86NNvaYztaopIlzd+KeSKPut640QF66xQNaKgTyWBjq+n+CSov5FyUN5lFVRyK/IswxKjQxoDIgpXupgyhdpgM+wQ3PVpYWxgp4lVoa1zi+m7zdt7NcNaC4WujtLge6I2w+gjj9irlkRMsWL+ZooAlRSnWxpaNe+vCYhoM6SvPCeOYmb67tjgkcH1HeCARaPT9EOd4MDYk5ldZVzxMyH6QNZrKOxV0AuXdlCC9V05YECmaMfuaP73ebtOHDsJVf4NMe/NNg/atWR67jIg04AK7HoQFc3jeohtmlLIkKxelZhnKwK19AR19NcxjHcXOwDO8eFXFaps4V9s+aeaJTPROlk4JJsSI1ooTiMD0/wy/Egj6rE6xcP3r7uDIynb/QtyNTH6t+TJVEmbe56sZq2fn/XBSpp1shJyEu4MmXEP8b42Ufbyhxg0/vlL7dUtSSRX/p2W6y898xnXl+d0e9asw1vaXNsArtqHk113zcUFaazFWzbus/l8WDCG7UdM64w31tWZcpXskuPnSoEOyHKwOEAeEEDXFEsutA4opPFKaoQWjpBDRpDFRwdSoeGimBW6wOX9W2fexYa2ccU+p6H3Kc9UDvik99q5HOoY3QM2wIDdpfTInbUfij1yRVKazbvRMx00aX3qjKbeTzokHvwhhBRhWZIXU6KjMpv+6VXpQmEVLnIkiVMF3ghz+gSzFsi3LtE9jEkEeVg4HSuyL6Z0eBiISUGhGrQPyXt6F7FyyQr4GX5UkVWbPL4betdxxMAxzfYel9JLMfLGkxs6/5yXVFoVfEz9rcp+4ZjGbAgbXycdTwny3GXeMYbO1v6BtRHOs09LDNmC9q2IbKgk3bbty6W1Gg0J2iGVy+2PF0FDfJmsh8+9DT4cZdnhYYvdG0SCoROkZJlt1WzfzRqRzfz4fQBLqTYdN2KaCbdgeFfs2I8YM28aAW5ljRL8FjBaMLuyARf8+FBphe3gCj3Q7FrQxEN8CWie27q2xFFTwsRjsHri1F4Rou5QqNmff/AsEUrF8eJ2Wu8fV8UqcazQNbOMyMf+2XyRVub66nEnBxZG3VlNiXgIWfAVHtqIEgty641pt82a66ppxnggry6dNflxHsGzsNaKdHragMSFKPJtdmXrMuOaFnQS0bDth7wx9v/DpvZ8Foo3LXlUjgWCZMjQgSfGLFYEz/QQE71ZVsHIbDwGbaur9TAmlV5AegdonxhX5ZAu989Eyr2H6E5csdd+Mc+jPcfpGSIkOICnCo4RCdBaM/GauxOOR8+qkMaHRn8cljtGLwyFOi17RMNBp4npLB1XRVasW+lOUb7bOfvEE2OCuJ6eg5EaCqoPktvC2/obOfTHd65EKwuApa1o3O7e9ddODK2LpZ2sjHzzOpKBc8JsrLh4FljCO/6V8RakwQfGPWNw8mTv22q/xnyKWxpv8GFEP2aSEJBmFqS/i69c9OAUzpLYVNhM+1WhTpTwii5Q6UfhnmZeaUiVkrFXQTvn8wmcCKkJZ6PnXCalOF0K4IFaqdVNEWdJEJfXwNn1Y3g61A54/Gmu1ULkpB+JDIKAJtB6oZx4nCKlrStqyQRwUKH6o/uuaV1lTJwXQuopk0c7opnE+JYg94RX0Ko2nroRKDOyBzEY/pA9xUQO+YgO9APA7r+MlpYsluEqADWbQrG9i+H+mHFgpe3JPmS22jKs9jdas8Czrm2YzUpXM6DWRUvUqaPqMTKZvtJT7KXSxtUlRLpkqbtVVpz/zwWig2erRNxdxn0rhGZ2uPbbo+IJhCTbGC+bkSB5HcN3cytYKUiKKSy5kw+koFoHG6WmHyPgSkJJpjhE6Co4aF6AEfMzycVuI7fWSSMIdpNW6nFUMX52sKKYpIDsdDQXnx+GqM6OlHngliqUyGwt+g8Nn5iYVbsHrwZLeTY3Uy/tSkvV1aEWm9mHxY2MqNF7PVHC0dvKB8D7vKacRPgF1RaWOTeYgKQHcIoSv0vq9FzZWA73I3zY7F6xf/NdWYb4axdRjbrpobRl5f6cfD0D9Yunb1KXntIdYa4VyXt+L0Ao5vPTwv26jbjdpnZO9kDReqAGOTCPjrxB3AvZ+hqyflBPpyAkx84+ZbEVnNMOHxFXcMbNwmBoqH5taNBfBZWJaB5dYlQuQ20SfALefK8c0/XDel93Umw3Ou7U6kU0rA+Gyy+OomTV2YChAA1cDsfEBFM3VKkpW9ryUlXAduzQQ8DxFKbq65myvqFxjH6zX0Pwp8oLsGQFtLIzxVTKpzCWSQGW+Lspp5jPBYNQUTQm0Xlrx8bIlwwpSmwi1M3w/sdRiz8YirRfXGyA4I7YLXopPt2iq4gCjJumKSljzmORwMqrcrMOpVu744RXZwWx6O+m5XisPh4UR92aMzeU5ukYLdeWzTSGjwnCxzApVR4xjqlSjKnp1CY9j6ZaVNRJHdjght8v1AyudkatOe5v6ZhckFqOcV7sZ6Hm0KnuGVZtRAK90ltt4UC9y/B6sZRwqkcBZPuxQ9dWQiDZ+DEa0M+gCOHcXcYIS8c7iLZprLmQZEhA5OtuGSZvulo773trAz2G20QQqOq+rhQr5Hm3XdaOSN1kYzRrafNhPAgOcujBULj1j5Cvnfc287CmSo/jtm1xFy+VhAFnWzDYlV7CQHE4BxIPdkAZROdZJ9bLtT+N9nd6HgmEQB2GnrXHas5qgQWE9kUbOKAdoVgN28wULJt1O0J/GRz3fdvZAh7gf8Yfdkfrz/tSn26oc7wrfguRp4Tp6BJmF6QlHKjPBcxyJSwJ5eAnjEP1XGnJyBcwHocb1S69A+lXV3hc+G5iI3OBxXOIU55oSty3B2QpnOLCI2wLj/w+BQHrne1worbVkb+/7CkPVITjvHpPPNAT3uSlMy8uOzbna7e0zIAmYLT3JazNTq2gPsWqiqPK8CGjBEMokdO8yCmuNZybTQmCvT8F98D/Qffxrm34AhcoqGulDFvv2GXggdnlJblluhYM4XxzjVV8O+Hce+smtpIon++YlpwQy3qt1+mri52JVUJOcOfIKHjC5bRBCzbBjoSE/q2yeGqM78R73Yd6igEUJElE3ncRESM6dV8n3osH0VI72rKoeDSEslqZ5uau38tLcOaFZf24+KIjkh7Pt5f2kPzW2+Tqk67OoFb7rtOCaw/O4dSf+8G+dxShETp8JqU+WN+n+/VTbrCAx/a/g/DSSM/G81j2JBU5py9Rhhy52UDHFc2LlbPxkl2vGWFL/YSaSwIAVSXr/QxD/oqmsqMwDg4MVR4Q6xuCF2cATTssgsjdKgpQFJF446CoLyh0YorwnvPHh7KbzePJI2kG/9CUUDKkiVACnLKUF2NbjP0wxP8HN+QGizQ5oW6VVeHoqS8oS7nbNX1gki8Gq/TffgNRpwgOJyicNk9pxBL1MRD0J71UeC+g/4zc+GWygpIOPIZZhBeQS2hZIZnKOtRwABl3gM2WB2fWI+/9vGUQ2PRPAdfgMmGCg8u3M06shyjAHsKhqHNmlUmVyfLG0KmufnYzmtgb+rY/tDyvLFjVhg7CSoxVh6PPiRh+46xt3qPJDJWp0V2d0lgcMyd97dXZK8AO+mgKg3aeEsSnOfwWP8PfKvOyY/vDF8Ob0U0ZdNrRd2MAxqsO35JFKDbfcBP2FbzWwS0xhaFaVM4kSoeT+6OHr2lMdhTJFrQaFW68LL+s2EbeZ6J6XRYV50ukr9AI1tGSxaWrt0OfB+7BTi3LMDeVbv5W2k2dZb+0AIoIJA9K78yLGYj9eKB8Y8/O09q2eGNJWSb/M1kciVtv7tyzMZdPM1GMykyn9bhsWPKIm85L37CTuYKdp+zbykBrGRie/QhDB4gn9LUOcqObaq8S3fnvm7zciSs4XaCqRRCYlcprlXmoz4J652Dw/syYUGE8WYqH7q2534hugXop+Iawj16L0rN2YhBnwCh3DnQ99xeGZ7UyZOUbBqUV8cds0iq/Ch6DVtBtDAORI4/GtxH+F+8n6zIgx7N3Esh34/pxv7Uzr/w6hPO8azaagJSbCJ+OxngjVRB7nv7DClfNGRPNfbop5roZMlJod7LoLg/HELhbwDGes+MtbdujeiNANy7w7Qyw/0QxTTaNUXBAnoECA+X4A4SYJBkbZDibM35ZABnWXICg2ZWOD8K40LeJcGCaciz+yO0K4793aAYjL0UV6cx4L4URSkiXUhAb/81wbt9zT9J8/7o8KclPEecEw0Q4+jlDpV3zoxAPRx0fhsgE/v/9x4BjIQVP7lCL38q/ncqCFKjcL7prRfjUKOy3uKFg94uF7PcsiQVN1QEgY4ZOcU28Cs1EEQMIms7UAFZkfuxSEOgOa/1oooGHshvJi6TYmaY3FgywSN8jVUs7x9EOpskP4e4nxSckYj1zjRwkKWnDZu6Aga/0vF8NGfiBi9kF+1neTJAXmqBn9X6bjGAa9R2VvpGL5dQ/xuwyPeZm0bZldNkA6JLqB1gG7Krlj527r994ad6hbZq64611AyWZSs8RHF35zVIIgB6fCeODMiZ4BAdJ4LSh76mJGcWM3LpnDav711K4ldxxzMSNcqE78ys9rBJhutppLcw4PNWAgcbW+lcB3MdM4ONqZF3Fq3dwqLts6gHorKT4HYp4kjH1dWwQbJ/6Bf95Mv/AXFyvIY0NUfPQtxjlnaAF2uMxGwJgf659ei3SwGwlpexj7S2RAZav2FzDDh2d4QbQloz4Cknmqv5E41EGNDkLYG9RSvneUkk21Qbg9J6e545IgPoidtCrEeedPdZr9fMkLheCu004BPZ2jqlTosJVSd0PxgOx5JESjgykomK6EaeTFvmh23hqLd5CBMZUzJ/++kOL4FYUzP8KiDlda9qfTQd96WhfTnbe/SIU4G/xbCGwDnfCaIcrnwz+66JrT6UPhGXo/KUB+HUSFPPp5Iv7sGzGcXizOSn0hJsT74JNfqNEw+ufCq1YrxcQsF0cndPK/QVt8wc49Mqd5U2GyOpdDka9hobySlyhD4zJ7A8R9B9m0SIRPGAZZa6UfiCxzswG2ihvhWpKAl/Sfxbwtd5IFMHNUsvtqz7sKT0v8+6TLNVxjJvH4QzU8I31XP+DBLaDWZ8VVvkTiv+Y/nwusXjZuA3YuxpG23hRmm3PqGGUyZrzj27UqGNiMc/DdbNE15Gg5oTyBqW2q4VOC/V6FRB8KHxixwoyxYN5jPEwluZJgVI97s/GWG3jtyAP2PrKGFguAt83Qln1rpOE5yjXPISzl5DGGEr6Y1TmPdNUh8jDRqP0hXtxTJs8O/g7LkqfE7nizo4s+R47tJNjTOKIIu3q23EZVUEkxZOExXqyanwBC/1X9/L6vqoQz+4wwMHKp4ko2uOBs+BQwXXHXE0eUu8/2M1Qfn1t5ZY+jhuDu3IjZq3NCPhHFVHrPn+Fn1LSBicoqhkQsImRbVHj5g3zbzGXcbJIGJQ+dWrNFn9r1m6RAFFCXdYNt9lpbNuaVjegTL1Atl35Iyd3Cp944MZOUXeJzDoLcnUo37QtKRRvKAeky1EzDQ3jTCMXEyJPkBIWa7/cyMzxIkZkbnV+O4hPOa3lr0WHPfDJ7ScMCEU4edCe+5yLwfAx0kXZxKXZBWXZerKusrmWVOFMSUXi4qQG6pFWf6ySN7yS03baHo46BmcW246xrszxBhSFEpVOVuKBMZ638XTMif016qo6IGQ3p35EJEfK5QeuTRp2D/VGIUK0P7HNLoiUDATy7U/P4BEcsmLxmrMw1vsFBMk5DmvEAv2Irz+u19ZjRxqm5fiQBV4yPa/IumVXa5uedhI2zw8erN9ZNmpqCKMjRBES4P03n9G01BuWBwU22Q4GVRQUG1suAouHVas5Vc1p6zqOK9Ih4SNph4siuAO8ciQYo4wudk2n6rHBoRQ78b8QHLCV6MvlzlFw2UYfKxCq88vgoUWbw28Ns11c63i+enQQxokATdKD7bo8yMG9Ik+V0BUf0bILtw+6EC8SsLQKhBoBLVekOVbdZNMN/hPiYWH61dANtVx+ViU17stJQyaPqUFTEackelWALfySCeOCe0Qq58K3CIApgcfBZJtwDQ+5sVCS31T3JPBIIeUXdDa85D7XCqFAVIne6/39fTRnnrYJu3MDq9hFaZoqwNAFeiKGFKZyywQCGDOxXzw9NbAb2ybGtA6bhSG/eEbU37mMnn3j902T/j1/d3r33u3Ja9OcievE2BKXw3nHqV4Tr7XFmeEynX2i2/qiDfcvpXwX2bv3BLa2GYHuB8oodB5ywSDfLZjOWIgqmUc7ZP3sBd4EMJqPnr/tUZFccI27VK+Z/WSNFrLkyl1F0wyIe5EPdLd4zLUoqPPE8AgaI/uh8d+HoYoAA=:image/webp;base64,UklGRrhOAABXRUJQVlA4IKxOAADwHAGdASrmAJABPikQh0KhoQlUVyYMAUJZ0BeQu6AuJAh8+mqh+2Hk/5z8pPaG5P7dfhniv46/5vWZ8P5BvPP+g+5n5s/7n1g/pX/g+4Z+lv+P/tP7mf3j6Kf8b9t/fX/ZP9z/xvYN/OP7D/w/8P72X/N9Wf/C9Qf+2f4DrVfQS/k/+H9Mf9t/hk/b/9rvgf/m3+Q/9eelftB59fn38N/svyv8/fOv8Y9vv3d+qC+X2nanHzn8LfuP8T+3v5bffH+q/73hv8xOVX7C/yr+k/6T+7ftz+Uv17/aftN32+z/7X/2/6H2Dvar7t/x/yw98D7X/0/5v1u+0/sC/z/+x/7n80f3/+w/+t4iH5X/qewJ/Q/73/y/8R+7n+n+WP/n/2f7x/6r3wfVv/d/0H72f5f7Ef53/av93/iv3a/yn/8/8n3ve0n9yPZu/Xj/smHa7XjgpsnF2irYjXk7gD+faGZY85T3T2meqDffRoCfLmalD2YIYn03ZYOiSW4Hg/pFtO5/WoI6qEDcYK1Xg9WnY6poavdfHK6pXECqUMXKwmAwFy1p7Xm2cpNQSWISXCeWQn+n/88c83BXVElHGK70Z69CQ3nT+v9sYwtjqa1hT6G+865rh8jyeEy4fNOJpkNi7ZXrrbybbt+CRySzfLs6BXT2yglbWBPS11phkdDrzZ/L1Lr48EmIKyhZHJ9QZochDFC1+NxkKytdwCovzP/yrGyBoUTkvApLK4Q4TyvXWgUBms26cfIF/iP5kgV63A7g7FWb4ctyP2nYgRMzcE4Pd43LccW9NgPfgOO1QYBR1BF950N5EkvK0Em15dhP+z4IBRf6JT+iI/xRmL2zzvP9Mu9W8fXlt0EAo/NHcuS6dG4CuPkG/xfPuFp5f+mIxwsKTFQLg3oVoyu7/if/YKHEt02JGVVMFRb4JKH6/dHrzTaN0Iado5/89a1cvl5DxyL3i4RZ4yLQ/IZ0vPWOR8Ts8Tu0stVuomde7t7IFLvC+pOQUbdL2GCZG/8A9JqacRbw2efGiwgJ6GnbMV3nXNtKGYGYcObe0MOIr/XXDyfT7PQsWj/3CWhvkcP4QXxcDKT8192ACvmKZkJQipTPM5NIBPo0awLtesPQwhBUSJYqEBcggMQCVPC6NH4Xe6GKsLn66Ritdrg4wCPomJkh7764VSktIDrklcHjFz1F/rLWWB8oJIQ96FWpnc6mDh/EH6J/7lE7qytgfb4Ra7e2V6XD2rUswKVrkvilp5d+GquqeXvprYToeHXnKX2Pqsk7Nw77YE9exbp7ybKCTNFsveKRc/fPPzPld+iezL5sLdshoK/jrulbYRvWT7203jT+fD0UL8FmwgmAvHG5DF/jZ+zyrW1j29gY7kdb+epTHEcEcoQRKkBkErVs76jZZWhorL3ewrf6szO74UDX/j75qsg2kISJcZjtAZfC/B3Nz16h5gtQVtNS3kLGrOcOSVT3C43ZilQXqvNHGqFaBqE+EEewHZMue/D3p2Zi3Kt3gTLJ+fbpvE6UA066/w4wR5jn93z5CrzooUR5yItOzLi7QVK8UWXUejWQpH6HdBGPV5337FARNsNwvLvh+2A3l+3BP+X6b5t+Gf8T/6R7La1Je4n/94JzmN6yQko1jU3g4ucrb4dqZmggJLxPxXGZzRdZQFceFCzIItpvGya/1vZHBTNnEWlwShYlOsTuEunG4J/SmICZPnMiCHrhdOwahOvE/2LKZEWzNidl8QpF7jqVJGN3el7byr7KNXeovEgjSnOCxdkZD8vxNqlDoPZcZrDHQ/sKT4xvd0IjM9/mHQLOuKIfDTJ9e/bzDPbIEnRpOyRej7GZ/SXMfZQ5MUeWF/NeQMXJ1VEvd0Ve/pwbpNQ2L6c/JOYmEX7K3nMdOtYc+JgK2Dxme7CG5uUGl8ni09ZXBGpMzf6WHmsSG0JSPEU++IxLSaASOnFzaHEcho30RTyFTwG3sb+UdORUxXfUIhxc5O59Z+4ZRwbIfzEGJvU7OjTfgDTeWZbJJmRIWIeXjVA/igjZUviwe3fqZ24ApAkqQiwSKGNblqOu4ievq+ZyTAwkshIKzaubLtzbA70dCS0kRNnZRDEAXV37jBJ89Urae4r7pjxR0ZWEGudxTiJ3K3jeiR829Ni6CbOrvy8cnzmpC9sP2izKPQd0fSy8VGKK8y30956AZypyRpPV0vDM5ia2C2JMXUVFevdVHpHeVTBhv3J+k819CfwMQ+uzRlr0OS1/zDrJleOV2iocdsyXFhSOjWwVukGmcc/QsjcZg+DrmEXykFEOnHUspfcku6GYXBm7/gayx9oJSklXYhz8d6wGw0eAGi89FUZYiU5+GliS3idhyBCJOCd9t57EutLIRBwtOeiKD6TSrtolU0zLcXUh/xmtTP7Uo49wVN2aGahK865oAfnEPx4aRqY3ilA0//iMWQ49Qn0ZoHqb91vsQfdJ9seqC/iyJe1SBKiSLbwFH1Unon9l7Uu3O0g8Xci97aQ1zfUn+xbfXaBZOetfks9v7kqEduQN0xoA9HHJfM7rXCxridzUGn1VjKvw4OEQhvPJI9tRXJAnc80HJ8aLBzDJhMYW9jmKe90ARb48mEFWitMa7gJNO0wb7JFzUt+tA3k0NjP+dAbJKd1pK4sQXAkpSFNED7owaIZZWT9FF2q2xeb73l3LOpdgO9AxdGe8tIPhl/zSy0mWGpjmoaLaf6LvzxlR46cb9Jip68J5szHrsVEBTgnFGrGeogViXvfpuUb4dMf0K7zb/7rE9cUi7LTBwvQp6pNd15DM5iHEz3wRdkpqFt05WfxXIlHbM1fjf7p79rSr8wx1r8qSitiF+JhOV85Bhkbdh4kAXv3gg7vyTLdGYKGws3trfwo/MxsHa1Qmi+Nk0HMCmz5NGDqADu10+h32687Fwb43kkp1GNc1WP6703ehkq0afrIuVFdOYsYnXUVbfqS+SRspoFil2IcR/3exGN7jSL01cpclUOHu8+d1wpxfzj5ml2QNQIhx5UTr37PYGlYorgZXwMo5NgiiLJH18cYmlAWSw5ESkO5ZYB4N6AD+/8uUeL/P/pnIrzvL9cfZ6BoA/P4vHym5nIQYZgdvgPCiEni94xX7HRiRCpGXQbYI5xZwA7C8ec2ctaPKxdNoadeNS+T2PmTuvGOhqkQ8eIDUCrQtvWSRH6X5JcOxiho7vA7f01ggZ5ieqbAyTGpnou34QpBdIrJAtI/iEplRI/O54aD2rEg1rzQ22mJQQTxkrvNDGGdxumOAqQ4ZyIojY6fbw/BPqTyxIASw9Ng4HEzzadrxAD3iUTZhbb3/Q1LPBju6/qJa3J9+aFdPHtmIHb5+IbbEZoHhbSUF5kQ3OiNiNa+L6cevc8QqdlXcyUz9GCS4FEv7Oo5ANDdoLw2E0ocstTtryRF7VZ5Jq9lS/hLbNKpzKJgoZWSuJiZPCgROkc0Fs+0mYILlw5qKBttjGkcjxIx7lp7kNOtcHtQ5Fu130HG3eCqv2YqQtVX9eaBMDxZCjNzrmE2bLYV6dHSQsbu9RbZSwgSqFAVoyXO7puywzqKFtvvX6NXWWgMtZQT5fkqBPnmYVQFjKBW7jLlDyWx7X2OoImeP/is9P2Rp5ALKxUbBaxX8P/oeDHRRzGU5IlIMc5vnRKpxq+hKM8Qmja1oqruXyaAI+xH97QEc15KJ0AVegfYiI4ZYB6NaM2sPt5430MWHQUyaJoJxZIxg1n0LSf32rgcFKXzc++Tc8/j7TxEbHFAnYqcPDKYrLw+Z61WxjB2oM5+0pPcViWlv4na4anYR44rgXelW7uIQo3pI9Eip/3v6EagPgs8GZh1oiFXaUcLUJo/rpDRXT2HuwvsXOM6rCxCBVzqU86wC/Su/qg3skL5Gn2TDJwETz/+7VDU8Xui0G9yXZWnKx3SGrNWcS+MHPB/fgimyPSIqWkhc7J4iKkD3rvMV6ellDTgn7JmLB90SQRRisR5VCyZ7NEIacY0DO+ME9VtOyBiJwIdIcSLRiqjN/49RULGiCfKqzyZI0sN0oeS9mj8FHdjqMMnwX/ENkKaKPd2/XhATnbgNTwGTakKetmxQ5DG57/JpK3Fl0WLovqgBtbyz5WojtonutBws1TlHwpAMUhxjGAhFFrMu1zQvVcC89je/fPbGFjiu3SV+1SAqb5SkEWT7bONwgIYi7UJAP7u8snJ7PRzSweLzSdejslt7trJhJyuF2uPbl3XY6NNq/TYyv2rqI0p+XaIV/jviNg20SyPWkk2/Nl8b98afbU+3g9wnxbu/7S7P14SbLKXluExSu70JAn+p78G8HHwFyCOkvmdi3RrV8nYJx90/PUpYgklXP+Ni/ApsOoLC7I5FHrfnKr3Q3HEXSKkCWD3lP9/6yz39sv97YHdYvuo39C7k1zVa45QNKanD5ohZ5Ha+Dje5wVEkwcNoZ5nd7nZCXu5NHK87fVYS9nzOmwlv7JGIZUTrnHx+9PI/4FE/SzWzJaxD7RpLB+FM/1Ss+LWfMv80PMy6odSOZOu0RdtfeA3BZ4ljy4tsc3106aKMSTLkEtjEah+hVODA3NPSve4H8nlnYQtOExVzDj5pBY/LL6hVwGPH/44Axu+wPiaxSfpm8SNMn3Yx61Yuuk4Q//vV44oe078mcDluIedBwKXwvt41kSDuonddx1hBRErbf3Qgf5jMMiGXXabWKf2kXCdsN5VTj/Md8yA8L2uit8HamEwmdQs5Kl4Bbz8EN1+IYACr4l057AUmWdXWrarAHdLgQ5DCP5krgPX2Wi1nP+LuxFJYOFzcLSTE2j/xKOrRde5kvJAbxBMjqXbDJpbN8qvUXxCfOh/j0l20KFyxqNh/VB7ueS3Rue96W9uZJlV/WNhrWAPJPfGidwIydPiU7Xdybjp0vEHnuTq2tmmOaUkYylwQWZVQ/bKtL9Zhw2rkyuj41bxt+Pq98cDYr88wCQIN8E2Zqa3B0EDLpLl6I8qj8az22ZF86NylrmJAJe3eedJ3hTdSJ8LvGUrPV1FAcoO0sBSIbM/gjayu5fNWvwC96HdZ4PRt4jx3f/K2MQS2UDbqFkyFZRd6skaIxCXY6wO0+dGUsfOZBpfPfah5oIAKxUr7rLUOxEbpuzTQMaHFdO9Bi5NYcbHcRb9xFSTBTrqxmhHl16PDeKcpb7HhBPQV+Ev0vlEqyq/5ylNSq9ycRpS4X/BrAVWIXpGEDN9ui7YzsHobrpiPxjR0lRJzA0EI64qimXp96mlF8dvCCMAlEuQ35FbObYIZbwFcm5RuFxn882r7bG9ij6TqjElhMmo0pOidTPLZ95zy3U+h5nJVOD4xFb/6cd7DHcaJ2Fi4MU0wgB9qPnAYXAYpI/5LrXFLs+vZcmn6t9BtsCAzVjRMhhh/33aNbmPvguN6JPPnDlcoiNbLMqVIp5o5eS2Rppqo+CBJe/kSX94ZReALzaBHMYUBgiNYM83eE4g+KPMYBXknSsR9AtEhZsmAd1mED9MqPIWUgUBYboeoCghCwEZA/VAMgRjsF3xJRrbsJtMcblOyHqF3xrAVLyAKKADqJl6XDorfVqyWw3flmnNYsBus/LBowvt0gwosxD+8SMqQOyZQRFJcRXbW2DOqGQgawCy6BxRwMFwo8h+Guq7Iqg+n3HhnxOeXlAl4tSqocdNmzwsl+rpZC9UpfBMCDIc2A/ROrBQFxCmf140CZVlMbjKqcV3OxvKRscozkSBQsK8ehIEhj+4DGfIk6AJuLe/LtuIHX0MMXgRk1EOv6dKjg3tP3bAKrysvbudNplIhzj0d7We9qCbjqO8z4xUosai9FJkwK5rwtksDe18zI4eIbspyo028rlC3J5FVqw3psbg5nFQGGM+pCjjp9y9NyOdBG1lWE7EGBNiU1kUyxa69RRkU5Do+ncnIDPDSf6qA2bauP67RZ896Bm2IApT/1AYwIIEkc4x4N3+vkIoZgdwDvJqD+q8kSAXoVZ/EsfB2bRiIC4kximhd6LZyFW0Lo5T0g7A3ELYTv5PNwijEoEBxSqVGvJW5RsekNX2hM4u6tSD+vXoT6ROyaM5uY1BC3a5CEhoS+h3PAhHe+/eB515XKqKkLMWUUulX8YrI0V1UUNnB5uF2U0hzaaKmERTpHAP63elYb4ipqIooaEnCIp8mKsNjroacATdHY4UPZZTiZW49lWfWDB0fBDmY5hRKbHnwR8px4Tbu96LHfvTZxEotslzj2QVfgoNwLqnOnbZwFOjhN7O7ykCyJkClZ3oARsYkV38i1GxOGYnVUWXy0CmQ/xLnshMpKw2J6vvmeAXIVs9zQDEY3+sp2c+A584PaT87v1V5fRYoag5C+3Ram4PO+qOdf0qjxsvP/nK+elOCFQqTbb+guMh3Q1qGWq13EpvnydWeMGMKON7zCfkoeo4Lepta+j+A4kpRjOhcdr1NZUGlcyuBJn1qg4aKZm/0OFKWoAKB6k7N+x6kZqHHWEkHCU12kLVKFF5bAKbJ5MUzfR06zXd7DUgSKQm2l1s7SU8HfzKCcXSybgRrwHqs8FaE1cSWPHNYkOp8xFMv/WhfwpVbF8K+tATXATYp1bTInr2EqvANwPPPvm7z6KRSv1N/ggUTysCTb/pYxT+p/JbqBaQOj6ehLA84vKAH1gTmOQZtKxUmQNXFdtHvgjYLFwkUV4KcXZIXKlYd4GA3Q/dXhwfApgss39DAHEZIemWhxCn6/HxRRzC+vQv8ra7yjuEh1ewvQCkWNRpZ2AQl8SzgfUWNpRemKbPsV+ZkncdXUk9ZZ+FfzJNZ2nMdkoSMjAu9PQBUzFrKx0mEM1+p1BbMlQxOGAGYGnrw4Lr8pE84CFiERwkAox6FhiFvvNN/tW5LLx9hrLDkMYTAccQRw7H37UzuESMS6rOPk7AHezxwHJTuEyH0jYJ3JheZSvz1MmHQXrsiNk/lkeP+d2Ti/BW46VPy3cj79nb/mLOz4OR9I9peK5wwkjWyAo8XS33BiL8Gha8SbJ0JLwj6bCMnw5Rb97sdqvp2PQPvMc9kkTrUECPPPY8+fX/zlNpRsX69SvmqXfb9QvyCC3tIosM0/+74ce2ZHQXmuVAgQV3DHSYkHckNlJdkoHWSkqge2ziWVpyMBSLezqse6/OhVCm8rdMIf+akEnM3762/y0hjxINWE0M5fM5d9/WoYVO5qFM6LiT7cunvXpTuvqGjYqriiCX9hsSN85ksW+aJd7lywDmapu4lQp7tGYrBkDXQpT/3sQOIXX4fWVCwalXYRGfbvUBTXfWsd7ifracuRHVMYgm2B9gT7Hu5qC7mE8XsZ//mqykXJMeoebZcQOJ3ZhC++iMGd7Z0ZwiteQOeaukcXKLl86Kft07kUZPc2xUUbG1Yw2a0XJWC1WhNQKiwSfavzAvWiDGW8VJXYQFeHXb0Eu5lA2Jzxsk5g5TomhJaDfien/65uFvzsbZwP907F+gOC/zJE4dtEToWAFE3s3rWnUX9KnQKgV+ao3or5+9q7MuYW8dw2mI3SIm5tBT69IpfrptXrqE+zNSnjt4eek3qCDDgdBDS8ryaQIGRxWmkkKb44HO5Nq7ZZOwhnZtmd9bWYMul8E4CwRfFSYHzjnZITivbogJfMcLGHwYk149zuuQMLwGPM1xzsPLiBqe2Jtt9Y149d5LNj5x14wpPmgM2ukqAm+piuqtLEJ9e174XyO5J2AoUBnt2CXQACvKVIjTz+h3vPhtbQBcySq6x4gZv4KRWLA1S/wwfkyXPPAxTDBpk2q2iNr3tuIzQ2az0gLlJCMofg7hunLjMolles5aXFh4d1R3qz8/Nh8hKbWkrP5YGMd1mJFAb06BcTe6rgymdXc/MgAXzi31eO1FR4bi6ldp+zmt7rqfcWfiYyt1BGk5zJ+j/4x93aIe/27CwvqDNHu/VecCCdgg5f1gjAeSLQd+R3S4EOziyDEne1Xhc7rMQulibWaW5W9T53spW0hB5qkm/05qOfhcCL0/ml8fHkJ5dxCio5TZ+BfOviEXwx27x2On++gP4tHxAW4koqk1Iu8fbDhfXxWj4Oa5c9Jd+r8x1lWz0Z12Dx+YcCqekly9dSRZ7LpqSE1xzNjYtIhOmJkC83hRlrb9DAX7BIOTGS/jhffWoYvnoLfDpyINCH6T1fVGE/apSsoWnRhdj5fLoBHp72YZjhuFVg5omQoaqvF/l3JQbUFHQZCf1Qe+sbuw+l8Ps7TuuL/iPOII5CrLDchspXL/Ob2OxjzLAEa2587ckF7xpCv9qp3ReGmlRfG9eVOuy56MINvpISalZq6J23x6cWwyHcYCb9faDrdgeHR1yjNQRNQeblpEMfIup8w8mw7xsd0lEc7AO82NFyWSGE7dZnh3LAQSnLX0XE8s64fODPzyAu9kwJ/5UruYtcIvC6PtrlqZ7a7Fx2qrFqy4YZzYWQXNMbtjU+01fxc7dgFN4/zZ/NifBgCsW5mF6ILNVwSTP+Ve/NIkgRJQMJXn8LwHhBYWjt7o5cvsrbc1S9WCQvXditKKZPfhvpB1+e4nfUIQ92GSWsogoKcdJ891GQ2BEM8iP663njueyGa9yCi50a/8J/WNGZfzfV6OGauA2R/PHVuPi4xgqokuZNS48Ah/RRr9muupqE0hO1cw2b4GQAc0rs0TJr8FvUb5o20MZqLf6t3Fcc8eCcM8AszU/tFXzDJQHAY4Jw32KKqIyt0rMLbyvIQepk7qRDg1BzPkXnAeFWOZdE9hTkAYtWvZmvZeY6M3Umc6FwaYNG/eR7X3z2YpUl0yJ7vMwKx8GnJHh2Crfi6a2PN16ZkohS639osktLK3RoV5TtfS5MNpTMI3glTTO6Qv+iBvBbPtvz9IBwx+KhUU64Myex59IDssMjrsXfcI1YuXsiQU3+Nv1pc6omLlTwUkzOaIlLcT1e66YTwWaa7Htptj0BR+gaJjXbXl87eXL8YTYZBUcQWIAZmvHvdhEveL//rjYYtplp4g8imoZTXqBL+ce4m95yGETFgE7P+EB+CA2V9v3P19MS2PHtMfFJ+93YAQ9sze78dROsZPFBZ0mMEDBVU7xeWTVvgaHQC4JMp5muZMHj2aY7GosuGxYp5qG4VPl8HJCK7ZD62t5APwuGglVoAFw0VrCl1lvTz2BSXw8lHrMy6fMA3ZFDwEepEn/jCNChWSKm9SxMPgju+fgncrxwyGa0r7og9SQmMx1siqnoCcTjzV55STDvCvQ7tZ4kjA0DitF3Cfge+xtoaDkcQgifpi58vGXPRz1//xZrWnCXxepoDGFdahaY26iZujDf0VjyIXjqPA8O3yoOrqqyZgyDV3lmhMlyueCwEhShtgeIB32b4bS9yh/RfpxE+CESYeWYjtBpbrM/BEsVyhsWITam5SUPpWxryHOC48OxnW/RH0gFRhMT4doLy3XymOkQ/+Q2peXCTPnFRzm71MajTt8ETj6IJvkg4LMVMxB8f989IQsZim1iVpOeWB3bwceXTT7uo6uP00TIy39juzHS2nnNo1TXPzT4QIZQSRhRRF58DDlvSTMhDaZcnlhLQF3IFbB70KGqVEgv3LuOk1smVxkYzYmBADVVySF6hqig5eDY8gFbUZElWqcjKLQoOalRLL50a0mato5S6oQXDngxc+VImLhLBaNKjB/vHDrWC4ipb5U07Vx4yT85u7tymOn0KlFjZyrrWKcNIjbYXIR2ROmDaBk31lKZ1qxPJt+G1hDXAWWOBsQ6ju2ApKxlbC+3710cS4AZSZh1uwedZWtHogna0x1fHYwPS33b/GycHxSg8+dA+ywO/sdm813MqlTOrWV+cWN58kdZyWv3zpVIhAYmQu3hs9ggvq7U4VdGneb4p+WtNTb2DKok3DCSQoA9GY9EKTDkhNY4b0hmziRREGo6Tfj6W6C2JJs3WALAHnlrr+tEdlf2bYb2bIWnnNgHpvngtm6zPNs2dH3f8e1m61SgBOUKeqQqgxzwsW/Lat1QWA7evk3eo7HsCNwtFdmUtiWMlg7yD9EK3KZG73m89VmeB4jHLFZoR457fXvVhOYVeDKKJEy7fCl1nltrKMNfb7tudxghO0n2DpkzJmrTT9PTbLhNA5cYr0jMKwhwJeT6kgsqsuc2FrZ30aeQ1OE4nXkocZqGH9ITNMc7fmQhWTK32dvR5hdXUapmW9ecqHwivOhpB6/dQD31jJ78iwKi739uoN/WGERR3HRU+NVP7IH/06WipvEH6L+rQ24YvezJ5wk77cLfR5E7R9Uwph0LNvzqEFju7F2RiztDsz2BoHxBG41eh6CKioxBjS8R8oNRl1IKxgGgLjEfAqVq0MYtF8/IbYR9l4Ycfre1cUyhJkfAhWcOU0v1TihyMzunTq39ToGsdqUbSVz5sApIdjT4FA4JyCVQUmiIi4zIS2huUZazKrmmhMZlJj4g1FTeY6uSQCX2/M26VdyglMhhQUcwG8sAOroTacddWhl/alcghY7eraWgYVP04z+gqAc6MNMl3bvnAxt2LH+5C8FTLbmJS9HGaEZFqnz+0rrW4LMq2nQH3dOYM0LpQhwIPAV+vd98HnD49f6FYuXLED5aUe80EGmXYkKkh509aDfptuVBMcqAd1YPD+X1cD7CCxQPJqfkfA02sqimxpbP7tnY6AfaeMOw/+5ZFg7b3178/ANjlR7ayNwToO4xWjeHpo2NmLCO/cx6lWTor3bfUuYHKSy0jnGlK0LpS/2BowwpkWhHYa0un9mT5BVltcXxLRVZccCcsHjIRFqaZD8A2gWk3NjKaaaVgG6j6jH9XRqxYC8e8o3rR1EbSuGeI12rd6qtIymPpWWZKEv3fsGJVRUW3s1yu9o/IZdJDUzvK6Ribyd3uHL/SGnauHge1olqOy26lg1LwUOMT4VD3c6U+qFiK+Up66WekJMq2Fzw9+/lWobGqQWUZ/nql2g7g0JIePUGEWfnOJfZevUB424LtgLNmTwZLJ2uf9UtaIBI0Y7ngTz4Lk4/u5+zXdsDyGg6+22PDeBN8ifOYv0v3XhiTj5GdXjrtuLw/DWEODlmmfAEajsLcG1DVOqgQL/4u4vIBWCPzWyxuJgb1ZsLO4Kha4DgeX3MHwAQ3ggRMSE+ZmX1PVPsZmO3qgYYTonGTXrflI4C/QPoc21OHDqOtvDmrfuBbiBbQmpKfvtGXBQ2LzLhZ680Ug3bMSSSFo71ruOnfaN+0LIfPC9UvasHifXmZQrv9mIKqaEpc17HwSuJVPHmKbSVtyiYgBilsxlNuIBnZUPsHbhfECAjYgS7tIA67j+c2+n72n/l/N9Czb7q7iQ9fpPjaEUGJLosHnZrQQLYufPoAznNwQMCPdPrB0ZUBp1glfl63smGtLgeMd6DxLd9Sg3bGUebRUX78aFi7yxGVUf/ASvz54euPMQTSxGBUYRElApveEtJpy6hrXztAIGHmcGckkETDB5YZqADbPTt5elm9bVo/iCSuRSMiG5TMjWKzS0wZEKJoBVGgeZ13sLjIQAwqJoieMFFnaVY5lyJ4PE0Bvgm4qBNY98qHWwM2sojylYu6aBC6rYxQ5wrqN5pqdT7NGmzKmj9ezPYtuWuqJ4rD79CWEMfguwvTujnUyIZWR7gI6LeX/DZGVp6AB5XHAfphm7Gh2aggpnznsKujZIchYUdX53C9BQOcvr6UCf/I3EJ4ftZpiikZKwHTr8RmD0dEGePkYRrlls5HFIlQBLi617kpC4337WCrXSSkEdy4Xs6UwT3NflRc79HVIe3n8qoXv+aliLI2mCWJSmhTT7nhPZsPg2AqVVyQgHTnAilUVpyx0d3AHimzO1v8TkJRDwB7FPTVpOqRjisTaEl4T2ZnpwnEGvvvQpDsCc1QIs3Gi1i8KW+v4/Cta4Nt0lkpwyqz2QTLYTs7bZBF9jzNUAY4/uGHLuwv33QIdDnmHdtWH0L6ukuXGgzvP0eZzX6lbkWDP2R6xPbM9uECKJxoiCVYzdIfOahMwMJRW4uHA5AwQWkXv3wPKJIJIUDnGjPgSWvrKr3eEZLXl3KLczoqDiDF0KOr4siwWgA++CSSEBnuq8KF8uYop8rswlJUp2RZEznRiRwoy+CqAFMyAbkmQpzegMD9zPGbErjI/59RVMOObkEjHg4FMeKM0KAYrtqTvPorjGgo3rAXJbtl7Zt1PnCvJ50Rdc6dKALq0+C5RQpbOl20TGyQU+wJn9nu6zRNUSWk5qjJ8pbQS7Po2KBSOnfrLQqRwAcFsfw1Zw47l4v//zZe7TeRBJYK6LPvCg6755cpbjIu946qSSowQh5inIhAOmNSGvzgCHQJTI+IBW9w3rG+IRvS/3LDJo9ypAGVofg49BsfStg3BhAh+RdxtbYadFMUiE+F8HlrYTFzcSda4qWB3yxeBNPnXTTvFOd/jatONtRozwkcMIA3GC6RJxoqiYFyUWz6M74QPY+agFryaar864yM81pcIyUmPoL43hndjqc52Qh4PMRWB9tA9XqHu2e8E+hqOvJn1ujangEkma6dswY3n5YvIbNnk7itJOB0tpuYAYXUseb5TOYnvsRN9+/3yAtV09qAbpq1JwH0Mgbd9yEhQFtdk5AD2Nmzzb+bbMVWWefgzvOMMli5vvieFAd5ePHbGMBxjxZUthPndQcRjO+cvyw5/TvV7kAhb56I1FGQJqKWJfjI6e//5f2BZX7pQhav+IMLZj6o93W2w13rL6sG7NdBmLSGvOMwdvK4RW+D/yRVXUE33cDPVBKh/XL21AUXIZCUugdrynsO0PiFYpsKJxduOe+G20VeQGyhCsKfpUD8b7ii/h+ca3UA9fHhV9maRwDCzR6lH+NGDK+Ew8OLRASuA8NOf5/46Uuji1NEaM4q8n4rKweo5O97ZnJaIbHaMHa3q2JiBjxDS2cihhpfsrQRqa8ZMZMYSYy6nnMW2p2PACl06scTYhN020GujeXQ9I92+x1sP076ERo/904Az5MOVYTZupQlLsLaeSLg+TtRUbScBUdMrY0gObFSnRDhNt+u9BYGih6nMZPduj4Ktn/P/iGYNmAbZQt0Ykt/85s3BSgehVDfzCN5dWDkkXRYmTWLkT1L+uXaTfzwiOYe/PyU8exAlKWDf3Qn3uugkxN0A1C0bPkdNwGs3f3hJhwrLzGpFLuG3RHIh1MRuFVe6sWM22JjLQq0Ggs2ZjPDaK/jrDwbfO3ynJX4r5RM5EQFj+Zoys2maCRNNhfaGxg808du2yCEMuKoKb2C3DaOEUmGuVIl/QZgloGO3fcMffXER6iruMzDR9RE4pgAdpRHIa5Ba61FVYp035vR6jOwOMw+Gdn47rxBk+Aq3rLiqfPtGtPXaKjmrmKzFbW38gUJyK8PZh3h2caTjxGQdalETZU5AP4epUx9TlZFGWeAJdBO3In9hdJEag51Igmq36FvJ1Ie6ocMuGw5axUZN9uC2jLwz9L0vvLtllfTi20KdsKKuIH+WHatzWl+GnIXULH2MqNgU6xLNYDFQTh0Pthbez8UX6IcA5LvJXM5HdA20SC85jSWXtv8cKZViR+SP/KzIp4WN2EUMaqWgoB11u3Cs4neItuHYOBS/WV8CAYilWqCoTS3976CaxAMm5hC4olEKpl3XqbAFvSz+CTIqx9lzh95X9hYY9KSh4tiBQMzcgWoL7S9vpGyiNborP8FiEXS8x+TKwXw8RtavWoC7sJcqB9ToIs2SbsqxQ5likkxg+t183CV9edDoCStY+D75uCxlv83PvkTNP9KLHLWDMHSLyOu+rvhisTj04kC9I4oCJSc2MwPbpIVBnAwuc7P0oSuGkjIlkgCcNwawCWCRMERU+P7y2qiM9lCZ0g/5z7T7maxrVU/7ybA52UgEcyf6xtpzexLJmuWhF9nSpac5Jtq9ssnKNmWUD1AYn9c4jI1BKHLXjUa900sQxTONCkEAdXvvjyWTCHLQhIDybxB5vG4oWlZgLRC3PjzIpq1zFAZmovoUL8HFkQbWFBD6c8lPL96GeuZoy4m1vD9JrOgib2Sj6YsL9+wif9vIpeJgeMZLHFVgOgqjrnUFna4UosLacUlxQmWYx1eNeMzwIUdBLjUZIlpibh3tjBlbM4GWZJfoRTUi8OOhZUwRpfLm/xEyM/QEIjQgF1Re/kl9ERhG8J/RamosjNZ3SyxHnZZqBnW0AbJfDQHV/Uo3nc0bx6PEBaN1bxCSK5a9RpCxv1D5EvMq23j2nK7tAY+tXVchZxJIV49+w0YcURvpWSMpU9bJvYzNS6dyi1wSTVWUIIjgBWRcKOnx/z3b/9OkqY+qJtefbKa14wC7Z83YQ5gfKYE3zkUUXcv8FialSOd6TMR2ziCURd2wL1+dtx+rBdMniBC9jlAgXSo0H97wT95OxlJ6/KYyeaXNvMXVNg9X4wH8MU8/JGxTF2g8dDz0TJZJtyC3MojH4Yg3lKa6BF01kH9KqcBG6h5Hh0Sk/ilK3piUycHCXUDJWM51QaExv1XDk6lRP3mWrRqMBxBeyiEu8rkWL17hpDzmHRAxel9D9RE3rTCn2pbb4eaIfaQqjCXneJ72qwjDVbHKyYX4SN4Iy1dVpzjZaapQqJ19xmkjna7M5+VAaxXCZCvaKIdliFfby0zyHaELhl8cOPUSa85J++ZNCcOdeYenwR3iLVX/kxiXZnGXBasQ/ja79Xnlax7SAR7Fhv5lFb5QHeQga13HcRCBbFp1JGC96JhZny12XkBCJWD/H++oF71R9dqS8OC4ve6G6/r3KOlCi1g3ZSjKmxYhArbk6nloPPjTNQry4jwhMfTg+T3r7JrKJxECOwGcI+sqtYqO9J3MVlMJovgUoGpuCgo3D7zBRAbW8PJN1xeRsh6A61PivK/1xQTr07s6et9W8JqoxFEskR+kYw3DnQxUnP8sBS8tzBOu2UdQIaqXA94tHzlWmS7G+c+GzGDXkn0Dz55vA+Dn09KYI711aQUXBSozac/hFw82YfrcVimxxAKwgSlQCt59YkPJbHFEJLobBkcW/quDtFWPiSzPAOepapkPPRFlY1vSHNn+pyGsaVZnbYTQ6qefFrKZAN+jLrxcMLDIIS97cgJmf3gGzGFzK6NgU3+ian9QDWneBEpDUdSmizoZqI8wi5BX5AlDR7IY0Cdcel4OotoZc7BN0Eh1jjRbhyqUB9qmmiW49ZtUHVJqrNpa42LhKCRFgcMXUFE/8lkP0HWe850PrdzjJAYLif6OH4dgiSzCHcvefGqUstC2pSEGqkBfq78usDC+URtKCFdrqfD9E770GV/J17e9i3s7xU5fVjJ5qCbi7+q1qYrURBhcMH2e1FRyqix7CsQanfXSD4DUyqdCPE4G0+kATIGQMRrB/cJHeBeOHQh+Lb3LOSU/G59bVsSpb+WfSZITiadl+6NaBE2IArIdjd4o4yf8n+773k1Q3iriV3DJYBLLZJGG8tUBemtCQ1tAcC+G1Bp8m0VwlUlmqrR+SYD7kLIYV9iYYd1HMcG4vU3rjBxZ+eAMfmWf1o4Zaxn3mUgqfQvH1I3EM00DzpArgi896Dz0P24NfCUoHx1eqR2UhLCskuyEijNwW/pa0CWw3kJg7zgFWNBVET1LjpguXibDw37ZgShKFmd2iHVKcjxy8iXAwdPDFr6jXqtjLCM16vnvopuGYYASjRBgNDSA0+hkwHc0RuOmkLnPtydXVdR4ZGdQxCffCfbozTbEawhGqmBPTn1ZuzTWcJK0CVo/zxRB1vMpRhtyEwNGeJ8R8JVqZUWAjHxbofRanDw0YhlYQklMojAJjM3zIYEGx5m0yOMzSLdDGTACiHrYeb6RpibC0lN4l4x3TI04n14inGrfpcug4cS5crhWaDP7j53/BK+0ECIVKX667lxvSamw2tXSv8IMqwkzm6RYk08LXCn2l/6Egk2wVr5jKoJ/Wh/a1htGxMMU7P7SmSpBfIedIC3mphd5lVv0C4bZJBRvSkG2+A65WeKpGwFrNPa5L5uBW6Dgjl07k3Kh3It1FSnhRsQmIBBgzfcJgO/n14+Xila/STRVN4ta+n4nAS+deLef2zQ8mrEmPcMsUv2Yh2xleiyxEglg6JRWG0QN84tN7hVnfS+Y8wjUoEKmydP93nQkw6Uc4FVBICFH4Qb08tAZ18TJnEakH/7aMBFvw112VuGGqxLkeRPwfmskPXJTly7IDvoV0TBRsZ5IH/FoGn5FG3TVTwuRArwGGE+w+KFnZLUuv/uL0npnhJc3Lk0evwsrfakn5/qgzk/D7hJQNEpdSbSw0Mn7bM4c8TvgEX+rYX5P2Vub0vI+/OxOR671XBhKKgAHVtdCjv4nvhkq08i8q+bX2GQDjvgm0Vxq5iVURm9lyW/iQ1NpSqm33tPDEFPOvIyY0xM7WmohJFMSwgIbrCCmzOBJIfsii3kiz/Hitqc3CY0AVmjQWjvTuH5Y06QKABK5PyQrXkvFLZD3Rzp8nBTTyxadAtMQHkVdLzxqAPQALTBfa/2WEn7cOFvFwUwWXz/iozAJ+Zdk4iFe/FURmYFXhHtxQXacyENBGmQuUN2gcS9iaritSfM3FFGvjLkmVCkRMPrio+jvsIvQFSys0uHLpLsZojRDSnKPBAyQ+ANwmrBAwFmHZwYsbP13a1j8Zvsv84CmZ04xfcLlc6i4CUlEb9zQA+JbAAUKDAvxXAOgXBz9N2bJfR+77z6h63KP1Aa3s+kOkWKCXJqdz+NZ0c0AKI8a6Ej/v4m7a1PgVND2qbTOEmTwlzURh/QkM5vtTVINDIqj/Otl8X5zSF+/BCtyA8h08zZ78NAA82j0OeaeXFGz6uPZ+z6nkzNiv4byb3NHA1z73th+SOCUq7g670ZW4KojCHRJ/+q2WrMa2XTsHshsf57GtMIxLAuNLtWTOXkSNKzglF+fjb7gTx5+uYzBYYs1UpMdxDr77Q36/4rGhgquvgdToeJVlxGbWGskabtqtdLh7Y6tRsmBLB3QPccyD5yF5pJ5JuLb3j/leczDHWWh9wFCkWZuoH4KExKAWEINfCmWDOvsd3PzT4hrj5/9K1ucQBMSXPidRgcdICGAPDSmCymywVmRtAkt4Awtfhx2MQUoMGXUOr/3ubR4gErtlb2It9W9xePN1ruJDebFoM2UvPuvzK3YueLFUmoREaCKUEKqYSfRmNzrmCHQGMzDjXs41Tp+g6jk60oJnEtFtArLM9Gyiyj8x5HkAbAjll08YAV3XPyOHplI7dXkQcwB9W9FkrnHxTuZycM/j+nAcTPH218Q/vLAE4S+vrGuus1/HCieBbi7zB3fP3v/0cgXt7YhwxtbGjqwP8SJxPPusKrru/WXvnvqVCUunRfSmHIIWHtl63SPDJhp6ujgwGoPbkZ7wkfx2B9PnD3x9KoIsCHjwj8DnCPyFSmjImFwkDTlYAXcteBC3RZw9ZK+Z9xqbHqN5/p3CwlJ04qiI9gJJpGOHJjVMD3bCwMkzrY7Eh7YYALeakdji06oca8MnFAoifIye0O1EGKFYgxv27dEW1XJ9vi+XsBqIQ0ZNu/Dh9/w0O1oWg6RoIvyYfUbMzrDyYB4do+IRvJO4yXUmzqZh47muSYCcGmN5i6o79vfBuRjmNhZKs+0lbAlX0GzPXnPiXVoCOXOpcZPShsc6Tp28kyuk94yT+yZbfrceFR+WtXWTIUf3RNqk2KNSUwAMY5HS8c0JtpPKvyV9rLxbmffwwE7CqfyHxMUZae0p/x1rbCLSZapLU3Ny0N1dWKQNcw3YIbVQzx6DZYJeMmRjmUz3H9KWURSQrVd2qxOaQvLu9fpDyByuzA/ZOcxiZ492DQ96tNXfRt73pAVLAeYFSsTdQVqQb9D+6dg5e5T/qfuLfcmHs9uK9q0tEGH+EZbAFVPCpvD9bbR0xSQDwn3G+tmpMeMeFDF/NcMZeo3ekcTBMTMCU+GY0Q2TtJ1ePtuL1pAbLhykHKs6p20AmfvLzKLlnsla9Mz0Vc/RdWYWoQS8xrRyxziMxKow/01kZM73KBi3V0B+ZuRLDwJ/SBHHRPfng+swrHBYCUXXynBGLjSwvIcz6IIoQmfdZYXjArBMBO8wtPAzkGyVO+H1dHrRtTi4cY9uAQIE+NGeRKMHUvbtykVnOLDFPa+Fj6tFpwKWK6r1RaB8Gv9NZPEeyYhEWoMrdk12WVJ5fbATQzjpGSiPCMbydfo3kDfOyyl+YRoF+x2TqGsJsVvcqLb+41hRXsYS0wM/dhV3Te8vVWxIRnhUAgWkAPMdn4mJykvBStPsZmOt2Gbtw8eWkiowjOIGSQ+F5VCMxownuC1kF5t2qDgKvqxgJPjo9MtSvIFiU47Zis8T/8cDe23B+c3GutLBhFn26Ds7d8Dv62DWGBsoNphDDsKHAUN4iUZSLmET9JP6xCJJXzWvpSvsn4MgOlWkLYMujSsMwONrEgrNaO0zows5H/Tu5GobY71p9ALDNtZiWlAiHGx0SBElrCFYuAgPPQQSFBNJgZEcTBQl8wrOYLsipzrovk6AliO20enTEmthJHNEaaWkcPsl+MbKsskoMb3cZKIXPFhUgCzCNTFGYBXeyLlFLTedbrbAvvMF1lJJv76CAaYPvfPqm/LEYVFx38BnLVqJSC7w9dBY8suJIhYqzjEZCDWOpcKsemGZn1sw+abk42khs0Bur59sRjRfaYk3bxaq74XEKAHz91CAk8ATOUR4Wbb2l6k/BLrPga1DfxmxySUBgFmc1z7rLKS03xzf8otaZfeWeB096hqoMZi7ZnmGJVqhvGw7L7ztL16IJVtpThgqg7Ha1ukpk7T2DB0o6hEWUmQazm6rpLNWpDyufs8w0XmkvDsdN3+7y6JhyapeC4z5SG5oKTnSkVVe/FnSJr8/yanl3AN/9KATXp3Wx9M3I+MlJ00rAj08x14RjT3MYva3Y5Dfq+8NzxPwzyGtGsJqrXTm3/17qyXCsBp9wX4c3aZDwUjbrsB7EShiKHpg25Skg04wxcMSH36IUBEY++cQLvoxV4R3n68w8p+9vnwBnBBJmjfkM5ewkInVXhphr3P1HyiQl1WgB9JWUTjgdkz88uPfEM7Y0HItRd4dk5QHhJ8E0JgpSPXyJaq3HGvOPfvsKpo+5bi2/BVK5jP0+Zz1rggEn/F9MOmCqAoeQ+GDjN8Qr3PY6Ppbi97nBVrV17vQdXaazOPg+87lWh4o0o1OuPhdhipDHtXGqymOwjdwr4O+plppGKvDV8mCc5UMr0Nk9W9kvgXok2B24a4hzofCUwjR8TadM+g4N018iQhLor5zeLl6LPB6uv2PhOLP+wYLDIp3JBB8UZYh9TeuMLSKJyBltAvnAPdm/legVYEqltoSll7aMpeOoul+UUwCY85F7ZaA+pXwmvyMze0xxaPDWpH+Vb+JZPEMWIMURfL/bNYFE8QjI5NbqNTx1mUwAREAJcOnLPHbSP3QgzPN2dusW9LhivfmfBCVeNSWV656tdLt9Cp3NMZcLKsw+aiTR+k2HurKcnzL1hZefl2RYBExg6RWNaBCQ4kNqcVXISn6uj7FMiEgbEWpEfmMxjdwrx4SEBeK2WXvgpKeQsmE6kI1tgCLSlPGSDKBHcglRL8rptxwXvaCKpoIl/wodVMsaSRh31tobzdE9bGYaUcJpC3iOIbGsHvg6RRF+0rTcw9+XRF0L8k+iwhFTXzzqXz8/4rToTUgPFAP8HGt4uLLMGAwXWfZyQ76age/hxteGxHbypEAXoyjyJw6NWAO9OTnfxDxxVCNmlzzwkZW1MhoF+EVrqJvi3o8ByWDnIGEe1+KVbLXsXRoyGwS0DGAHjqxxj1E5pYkc74V8tX61taNqXYL71bXX063MEk8amCaLLF8XHgw3UsHFYuxvfF0A6pi4Kf7nHxDqrIiH4Qv0Y/+37n1ZPvF5QazvcxGdegmgOG+jiKB58q/J7eFSySNqAsFDyjBS8CJ+ubLdIPY7Y9m5qNV7LdPLzK4pyN1Vd3LtCKZeHQ+OxhltKwBunIBSGk4YyrU1eNxO2gRO0Tq83Z8tXK6R3GgPmCvg0CrO/FU6KBMaG7nX3aLe79S8WB7bTELbU0KIUqcrIXwUt73j+VyeI5LhQHZJVkQH/khzQQbTPbsQaxlCBXLUB+49BmdLfcOtICV/HpaIj7umEfseEuMIzoW4AoW8RsBKPxsqYVWDLy2xw/GIQf7BZZ7qsi0bpm5V3xeRaBpqR3iWU2/CyOL/nzJSgmE9Z2QQXksa5J61AX3QO1tGEY54w+QTZIHTs2RWkf1CbR+TqaNvhh4doGG7gFusXgombL3+Nibx+SuLYwtzLvHuHg+Mhqro7xU/lN3G2K6rE0Tqn7ydd5Z7f30LZK/6fTCU2QxWVRlAl/VQSoszDbqi2D1m6CmsuLMLdyF3MlxBHe5pmLHgJx0oDfInbKrlxeRcB4edBehfVGGGxQ7Em+RHvkZhu+PzfRTTV//9d2itdQjSE+8Ovi5L05MZ298lAvJgd29T0tCujyv+bBY7eYi8wy8wJqWlKADQENLHvh1no1x0j9IP/37JCDk50QGt1M3f0WcRwpH6Erg55pF0X/PhU9IUT1XBGr+H1iYfiO5/dcMzD87tgWS0vF4GHeFUfOcRsNloQh5/eYfWPDbD33GxYAYGWMuxAf9+rKVnMZ+2kGXrI/1TEH5DEr2+g1ghkOg/EcGhH45kEGURnRttg8mN+VGzV+CiYrYnUR3qJw9k0lJQtp68gB6Z92liu2Gk0JZ2vw6apz+dq6zwkwZ4y6xeWUtjX/ptv9zz0+3lH5pW/a9p9p/y+f72xnXhrebnI/XmNFAXL90t/ytQxJAA/U66jHlPSx2Ish42HeAMTQx53QnXe27u4heb9JFKu3XL1uLf3Y/e8x9eegqoSjYjjN6nDFXAUoGpHhhFbQzSjDB7wxgSFficdew/qlJ9dTrrWfRymHsrtzziPmC4M4puIVhDw7ATZ9GB74EH7W7nk8/l1mwAKVlIFw9YSMh+uvehXIQ/FJRpg8jpgpWxE1JJ4vOn9AvlWzL30i9AfrGSkvUqk3QPLNmULmBQimSleD0aajpNACLdYQ1nErUj2Ox9lWpuHTjMwm1BHglrxLQr7tWGGClK+m/mR8alC3zYJJ1JLteXHWPzs/QxmM1f7LjZjV9wSlO7zj5IhTpdCbHn/L4U1iZ3UlLizezL9BQ3D2A/GeQu/xQgAE4KeaIHdgUAjCMwhU1EWUejzF4L24sVB+11hl0kZCeVZDC6x53HsdSk5ZxwYqIhBUi62wfhmqKMDR0qzqZRO6VHT3o16RQywLthxyEhfHUv0ZLJCC/qAdHI3dkixu6oAcd/aOcHsE9mZJDuNAAIiyD4GOjjFgjAX42mNQXGQnoAzLpabad45HuZALwMLiMXTgMJIVQdkT6kwhf8hSUN92998D8AeF0X5sHGbj1evuneMkVR50DMOXpcKVNMF6MjWkFAKieHtrqi9fEM6gO5gkbz/pEvdt4hx9hnszjVd90sukEC2TwyjCXdQEDbS7grZQtvx6eyEEZP33rKNiAxf3cW9U7376uELULNQuHTPUhlZaTY+VZf78KZ4ogY+jdx+dMRlJyqCy3OkYsS8gFlJ9GnkcpKedqILN95VljiPSm27ThOqVjR7NyPayyLb5bo+eAmQTMb9LJaZlbVNhS1S/QIXIEPAn5mTOcI58KjPVqKxrZQuQMjPSCV0T9C+7x01BGogM/2yOWvtJ+lUtouCgTw6Vp9rwYFCukLGMOcxVJtwps6ymKeWJuSD03AvKNZdn+qN/nmbvQ8RHsdt8wsjQ5q5oGKKVxgpZmzXxOW4k8tgw7V9fXoo/iORaMQOJGmnZ6Hhq4tjJ5C645LAMTRMEYVug4BnzX5EwJZ+Fn9rPxi1lpy0oIqtwldz+QdZmJuU+cR3pZV7HtCklYpi1gcreWsbgXYi6KONOBRESkhzChA8/gkM5RzK0j/vijJK2cYz6hVjVPKgnRgIf7sY/TDJsipmTHo/kS25ETULJBCofRUj0QJM0S7QG7bRK8Vcu8C3y5g4XrSkHm5Eg9Y1U1QEP4nZf+oFkQqwescTnO7oIwdWatJfc6cknIhIfP7j0UMygVLW9ekPfmOMerJWg6jfXxouqKQUBonjjriZJkjr3i73ofJ3UUFmPHrTjAx6Ws4RwiFV+AAixtiXED7LESo4osKGOyJA1UUm6w1r3CxWpj+oVGBsjcLM13sf/gkVFAlQjcpiUIGJ4PT4yvltf3Yyrk6YO4NP0LXKugc//VZ9Qg8U1HSxnrX+eUgOxOt6NEPZpZIyhFrQMHrAKU8fQ2gkz0kKSksuTjCFVHABzBo6is9b1uZ3UXGI0OITVKSP1PLu4bCYV48d+iZUJqphJe9xiDhA5HA74TvPRaifrFYTFbtuiZHB9UuCbClR2KjxBe+jbVU9mpAuXhzeD9+KvCQIoqD3vgowNi2udIqytygKNPNBOGWiD5QLneFrdcrhhU8fmgFYYHdRoaXRG2sl4dJxA7kqYKtkMHIrrgmGKaMAnLopvnE2Jg5+yaiMQwgMiBDtw8xXzyxTYkS7mPTV9QWsy+F5XYrC7Vk8E1niuZp2UQOBBWEyPb6HqYqAIYP3c8oBH2Dyx4d8LtCtiZk2y0Ae8UKU4gwIBnCW/REuGLv+d1lzLCELUgeDucVgLPYkypDADZoPpiU4WtyxhgqjgVVeExZpK+FVJtAdNXsQWIRZgkFB9zYIDQradhuMz/H6axOYjhvXAzbSRmAec0xIT5mm3Z82RrhUNEFd5SZvKCTdzlSnsLmRJo0nZLG/a01Dtzi2mKDndZhha6x3sUVzwhmBOLSRPFnQBoyVIoMQC7lBWEa8LaM0Y2JKc4+gnF0PpG4ZDl75b+40lqegcl/XdU9h5xi8Evu5XmRJrxZM+JYuMdqAv7sXJPsQnpP2bbR6RjUBdVuqnBEJVro5GERUcvFt4Jkp9cHEsVNZpgkH//f9LzQFTFQFncy5jRTlWucosJUPAmkQRxaOVZ/2IEumFRKcWWIJq9GyA3f4TMC5KdU55YHSRA6dzY+pOHcr1n4ke5oa+CJVR3zM0k9wpjMM8GZNGW6B4x5hrfOX7uWcdVIyfOkzDDHEFW1HARUWvB0g6W84v3pjGObVnBMZigqI6ip2ztzzw+5Wqqebf4p6GLNcA6keYtGz7NBLosDcXxSpZJFAscFeaTfw3s0LD8O9qr5qwZ3xgvM3+kUGxWbce3UH/SdSwZzUk2vcnEe4IbwJj7X/2xisTx66X7NtsvNAQDJtklB5ivGNrY1uViTB0PkDp6lTwvzW3u3YSbiLOCdxbre8tyVNqpkPLB6ByYPzdaZt85BtoOOJxJcRT+I6T7sRm7lkOEE3ZxPeVejECv2MPL+DqeWI7T/KRQWqL1JKmmMWO6Ztw///dYOeRqnixgmIU5QqcYPJSmaeF0hm5LVeZjmYGsVyIo3rIjVc1/7iHLyCg+WGVi0W4ytfCqxW/Esa6YIrDZuvJ65YBcqHXY5GQUU9lMMbhxwhGjDHB+X+nibfcU8/BFBWxiIfu265yX1wN5D1mwE8EFcWeUinUYsNDqxriF+yAyrola4txz7hWkVS4qXW2QI492Lm7b3FBoXp4RvyYWVZG36nd2SYs4zXk4DOfOfX8tUuV1S+lN9A2hQ/+5AeKp928xghfIf1z4rPFhXmDlVj113ilMvHxcZ2swfcZEsVASz3qwXtPdlInq6lumP4WzCR+GwWogo2L8jLqp+FlUSNI5A5btsttaoW704+tTp1nLMUK8XlETj85Eh6TCjvcOb/87fRtk9nR87fteruL8JqNXMT9P+7O28l1E3f5n5W4PX++KvybZYRDUlhmIl+BuLNBKD+wtYk/fIEOCPC/VIE7JKZrK4g6EaL9ObC/b2dPG3C8zokk3dO9YNL/h0F9WVXShEKH4fF/QAYYIj/+7btLb1vWiSOYJDMaXadaGMn0QJrtBhu9Qsu4HeQQorrUzkEmYTFEJZojRX/8X941uo4a3e1WVC+BKPBZFXitSWf2KqofVsXPoOp2vw+1jhlON8gqOa4BM9vQXFwbuV2t+4CgbZeHVNUc2PmLCRg9Q2FmqM40T4bVJKJ/h36/xULiHoSNJlrwtCMXPQMrIDFR/qNIGqSUwmvn7U0+L43jzcUFuSrPlt3/HG9m7x9LCWOSYmUJHc3JedHa927PrzK1QDeCw+2wotJk9tGoX8A+Ga0IYVb9FTzvi1oHepwFxPAGDyueecCt7mdLMwIYvK/HkC1wSVyrsPGt3Qbp8fEgFSqGrqsf94yCX7whu0IhsSYG24coB4z70wMtKb94bgoWmCkciqoCNKYu8ElKzP320FnLC8/d4GkKyIwGdy0ECiLenuYkqUFFVw4mCgMOBs5oC5e8gpJce3Q7zko7HKu1+YcvbQzsllrssH5ZmqF7zqabiY0R0v0+AbgGHBbNuLmDPG+5DDCi/mnVX3RlWg47OueeFfXlfHwFOd4PhSGOX+1qVbOJ5dJK/avz35rzzCDdO8x92CDWPnlYsOdn5CpW5LLUfEiTknw3XQFjVIRMyUh+R/VWPZX+7/6p7syG7m1qUQEefQ9gPty+GZ7noRpg8uuyNfBrlfEmUVjU/Z9UtZ6eisusx2NrKic8+FnufEpYIb0SlKm14zVQzDB/h0756WKBgG4Eq2QD8r2Ic/xAdKKuzMSRq/XDnO9Edec+HI+jFxRI/1z3kFJwCKJSvABf6H4txALss0IRkq0rv8MHafsyNazaYGAES0KLDZGjvdQsajtn/v3PLrxDkUm61mx65F0/8q893LpsyDwJNC5mVEifamgaecnSnHm2zaISfye2xijvI45wro/pCoJlmXkRqaevUDqYwyhi/innCUlcU9xOWB3spAAb+zYVv+vutbu1puCPxMhzTT3gcYkQB2mwEAJVtsoz5vB+FvdvdVFTajXuEUsaB28dYNCCY+mndT5oq9EYDEIiasacMbvCwZH5JhMDrKar5byNffzBY8kgmpJov+Q8sExj8NQfQNbaOwust2WBaj8PE/0E4FTYOwkulbuHyMzFIwDSes1c6kHmqLYmXChixcKAk5EkwIGi5ZKDx65CQKr5ICr2rOVXDMuJwMAhMo4o0b2yZ/FRiLSOcA2oX8Rip7lyzkeqrtbRFPK2EIMIaRwCASP379JdoB4edUzync/dsxNeeFMyU8Rn9C4YQR0FQxcjcV6wF391Q2cfz91yMQazzeVcRnVqE3vN14lNAJ16YUZXsMO6L2LBScyy7WbFjHcY0tSqMqWIY2C75eBlvck3gz8XkuhEjXTftlBEWj2Cn8aiY1Aqco4HWzlET1Je7TqfHno0zwE4PGNXuLJnTgDUqLzSShWIaa+ZcMIzSePuAQHpeE8hMfGRCkn3RadeJCW7u5LbrgXZ+DfzlfjuygYnxkp4hoYfxqTc/WTDPykKpMglM+cbR9LrIATuUHv3HE5CmxWLXDMu01E8kqeW3yXe1T/hE41nwcJUneVdAva2J2LmFxSNacmJr5h9uiStWU1g2UZSSsxLwwTKF7miiz//3Yh0sQZ8YPoNDrcWhEnNSm0vFJ1cIj4foKbCEc0FpZIAF2MnJKdpj1lVRsViESXICoYyJ0czp3vrOGQQQRaZNqrxgb0fmCMKo3tBXfiyNoWLMvcJyz/dxYqcaoYIM0n2lWjFdDqOolR/SeuKqdPiyN3VXhExpawu5WnqGX90jJQIDS22AIJ3jCGCHHt46juGwxTh/PrKTMC39F/C2OWMAOXOd11TzVzHRn6qICMa6FcTOqrmk2Gg73uJhjCVoSHzhSRKP7cm+xgkO7WkxSJrfGJL+xU0E8/HFiC/oqVjtr28yfWGN+WHX+YbPkpRds9+6LreQTUU/ukLGK58noYwTtty1NtOSEY4rsqkNbauYUM8SNk5XvFdlXK8EBXnIKyV8PRy2mC0ww/aoc32tvsENuJgrrV/c+BZB17lnZtbNcOkrx/OlxydUxrTL54lVinj+/QCBxDPRD8Pz4YvlElEj4T440tMrqyp/SrudSATodYpLYLlZOCZzz76VRcllZx+/uQeRBHByB1l3/HwBc7Xw0rJ2dq8mkYjdtSK/a9wKks7gVWvE9z+WZ6VC7gv7Qyr75Z16VPhODy2/ELZjvHxu1MuzO6Vfa6TZ13zB8r76sMuyMhsoOSwDqE2LCUnonRcFzKzir79Beso84dF5UyFXWYddsM1vZ8igo03GDpoU9Sd7dfB2AKHOus1Ser8YY5LzXWg6JhKO75i8MApXJ5FsWQeJydWMTy7HJFdbw+G3WZe9CjflLoROFbyeN+xshpjq7Fs7BUnv9z5mAhqvQXGh1MADRfgnGZTAqKB1BuwdjNRigDnf8HS1u/U8p4DuiUZclrGfNkxpQthF45gve/MoA6peCE2JzNHLyvI3BY5AfNwU22HKm4XGpBrhbeItBi7uBGD87Vp93wcfBARACjRALemUMg7cnYrEKfIrh7nZiJSLl7xR2hb9iADLHv7B419bsJ8WgGNzEuhxMcuRSFmZNX1X5Lh59i/lvlsbmMsbBAS1yoDZr3PP3Ewd8gvlKL1+Rfh/jIk2IvHPDE2E9azTxVTd9NkBYTJqEgLfWHYS7Wyc7YHU0lkVhdviHROqaO6901MvXQPdoqa1syFbt40ms0qAipFqMk1w7ggIcO7YFEBbp0VlAB7ZLTKzNT7wRDy46dG4JvvY0RLBar9Fa+uw2FRo2xh0xpAAEBjpLWXuyV89jVdhFn6sQijTeNwgVyiWJS7v0RVaLoZudHEUqFf4ahtO9fa4CMQRc2yIIf1Hte+ZCxXSBijZUNQniZGo4ZMCT2p8T1lRwTw60Qetr+nw7bsP/7eUWIxd18XoO2cSZWCMtBI68yhD4dBZ++pmefIH1lohfZev3r/g5J91OUrTBfd6h9RKknJ4hQ8cnB11k4GYILEMaCShqI1XGg7ShvZVpywK3hmiPlDAwjGHmgAA:image/webp;base64,UklGRvRMAABXRUJQVlA4IOhMAADwEwGdASrmAJABPikQh0KhoQkMV0gMAUJZ21K8pHuoKdA8vQ/rL31hCvwr6T/WecDyj3B+9/F3xuf0+sL4zx6ucv9P9x3ze/2n/a9pv6P/4HuG/ph/lf7l+4390+ML9qvfZ/Yf+B/vPYP/O/6//x/8F713/M9Xn/B9Qf+6/33rTvQS/Yf0yv2v+GP9vf2q9zT/H/+nPP/H385/hP9P+U37w+v/mt+H/wf7afvD/qPuvvn9pGpf81/Dn7f/E/tt+WH3x/rf/J4Y/M3/f9Qj8k/ov+m/u37eflV9cf3f7Ud/Htf+6/aX2F/bD7j/v/8p+5P+O+LH67/qf579xve/7O/837hPsE/oH9q/1/5Z/4z///Yn/Q8R78t/zPYD/nf90/2f+f/dj/G/K7/1f7D95f9n72vq3/wf6n8n/sS/nf9s/2v+M/dn/I//n/rfeJ7UP3h9nH9djDfxR6A8gPVMLoQkJhwqk+lEgKZwKY86BiOzug0FLugXjipD2q1fsTkuEnG2iF+uvWUs9iZaCdNJa8HVkRioQlFuRwvpHX/QOTAeZxEusYS8PyTHFYe4UsB1XgRsHNm0+P8R53iI/OWxcryx0GbUKX17Qh6cCZX3vJTx5+C8BE0HOaJr8BbelQ43szwMq4kDjh+98+id4x3IBs8bWQ+rWqdhYg73U+tc36hJFdaA32n/X7YNCz+3+GXYRGARAZ0f2NYxpbdbvtXLOD0YyHrn1xxcVLeu6p4k+X/1eLwcAtUxPcgQRQLWPi7aaqLTgaGR/3ieGnT3s3JVWZ/2wEtDxmfuB0/d7FC58V2kT+ds4/kTFLu5tkIN4pwbNtdqW3HehJElXZ39jHHC9ZbaDQ/aCM9EvK3NnSsIj2rCDf/VuJ0LzdCWDVpY5j3/y/ZxWN/KJDrR9gNJ90LjCaSPfHBFua4K6/WA28kt8zdyDTAYiplzVgFu8UT3u9Pzr+fcZ70qW5v22C8BrF1ztOEjBrBSK962Mtqp/NWdtG5ZZliQZjfF5VwdhVCMnvYWoR7PGb7MS9iq0R2wOxE9fca++JSjxVyeQ9kdJWj6KFiH48XA9ncaJkGKfcEncs5LwmlHhDAnsaswiv1CsdJ3RvCd3XhekmqilFQzTT7aarGlD/bNhzJfq0zn9c2ukiCOgLXdxIuJ42ykAeSkuQnNHZAjBP7FqMTio1+qusfWjEox76cH8MeX/EiMNTPVadmoSKFDyEy0pTFUCfvdblzVv6Yz6Qwz8jpnLN+pa9IIojy4/mw0oUW8Bbj5x6ug7Ks2AB5L7g8ABp3dCzFOhH0WgWwOBh+WNUoPrCjkOF23wMnJxjbwNrQZS2ioySpuXkEpnnMK4nNH97M9YIhsN57qoUEgmi4Yv5of4qMSjp8FB+Fe6ctF+yNOtTE3cC8lePDMFOcSURblCeBh/Z4KyIFkREcGqxgCkaqCSF0an5qGG2prM/JuknngNmKuSpeTS3MeUmJ3d3bF6UtKQRwP05CI8k8d8Vc7wG+kcux/ESkE6l7C6HUqA+Nxfn6gcTQF6WnmxPd2aPDc7mRpvNiE3cg8axRFBYs1iWEA/NhN3XOa3+kNcAcj7xPTmMu00u6nOwQqsQ7tc+GBb67lHhKTwfLNbNZ2rRsh8+7TIdJBcTLdaOa0EWL8YLN28mcRV5TSDaM0K0hdAtdtFdOefaVXJllq2LZPKlqzsJmpCGq1rG/mjDyi8aVOAJeDGKHYsLy2Oua4goBunBbVi/iG3TCBueG8ZMQElLcJITSvJCGYVtbXuzqpHFu2H5dNj3Jijmxs9JQn9jgA88uQkJlR/a46Wrjh3Bw1wlW1xihWNA/ULpb31bsFk8Bcoqx+7MoOSMgfc38Q6KJh6iSoYJuYdd+CL+kwmQ/EDoeqSCD3xBjVajS7qRjEB9ZbLZJMyJVTHjLRX1LkrJm1RNS2d9Zc3EJZRER3QcNiypG+VbdCogFjAMXKZkeg+7+MafCa12+ar0EVA18j2E4ld6kAstB3eBowhG8uZLu2kauDSeoFl3qD2Ibqofsf8Mvd6QvA0TtkXGDRXeLbjHR3UhkOjJGVT/2BO6YH1RrwRRmGaGW6/rvjFoOt8z7UPAL5hx8GFMlX6VUZiTVM8otGuZN3zMbEOrVnHGthLRep31QofuJIoC8pP/j7qWdprrJeC+EsskqXXA1xQNI6uDfVY1b7Igh8EJa9QJyhNboZaz76LMz0x66feiAuZADjugku3i/hWXreItCwCPQ6s4DNfIfL844DxBbz4YXtXsD9d8VFMuy1zfJe17KYO9CeU8b/AeVz5kGbQ3NAzh8xZ4ALj9GnS3zH9Oi77JpdwYh4B6luKXs0J32xt8csP7W0t4w0nEXlT0zZpJe8r0Be4dN66UxVyYfeV1PV+/RHFvxUst+HCTmlNlUKmnBTXVC0xo+pcEpgxsghBLGvEu/SjsBDyunQe1D8h3d4UlyOe1f61uSCAfv8+aoAqpJEAAH1d/3fKAVsQJASDCM4CAjvg7Zp58QjaEb55l4Mj5pPiAPlSEdQaRyWTv6ZgY/6VT2N69LYgoqIKW4jrrW0M9LgsJ8CtA8f2BvkcPZmCPUTOXK/YW6jkIDoz1fOek+Gh57TavuK4HTEgddTAI/AroTeeCbUJMvqGy3obN6DG6ScS1EWpssS925hhf2Uv3uMQjFjLrE3ATHxx47LOYy7H0t14giOn+L4E5sb4/iYji/hgBqATB8Mt6buI/UiA1UmZnaSqSitiF+MORqtbbqwshodMgqhH75rfDB/DxebkiwKX93q1bUSipfo3hA2an1TWeM/dWdzPgr+I6rUHK3jhB+WSRPN2NcLSsSmBMZvDNpMlOwAB/XhWq4AUFd2pa2F1asx8dmhE98FGhWkjLAm75Osb06Hacnn36ak3Seqrta7T40L6EY7pDrgGlnE5U4U2UOqS6/MCcw/3++ac6C1ZE3tCn9v5vaivhzM5AD+//LkXI0X2gkH+qMf+h16oS/wAvG1d0AKefiqTkQckqDJkRCQGAiEp0gAlwlpQZf7JwLZ3+FCy3AL6DyU7rxv5//L7jv+YNBYdwMPqs1lcFXCUcPyItPlwNjBolM+rMjFboT+fkCvrffcGcKODbGWTMLVx3jwTpeueOjbnk3iuZ3cyGwgz3pSlOP9w444en9bmBvqxzzC6P1R6qVblWkQRy8GSWizC3EpzBpk2+vcz3xfdrbMDUgYzhqM33GfpETvVb31nHRZr3Zc30AEBksjgXaMKWdjLtSezqjs8bijKPPsMyKOrovFS69tQHPQs3p9Ri1vjgl86RT3UXZ3Ch2F3afIWZspo1C9xsgxwBc/sjDLMAZOkALo7495NYitGh3m2v0e48lR29ea2e2aUeGicr9w8FBQqGC5vep1YLQ3B/7/Bkphcv6SdzmbEOrofQPNzdGI3AE/LnBfegLFrngsE3FCPGuz95/LoVEOrtmFl21e0wh8crfpbvNGrUgWlRzWt32mN5nuX6hJjzyxGO8Q7XzLMYO2IxaMT+Kzg/ZG0l4Y6u87NH61A8aj4YdHmi6uK7CQEY6IVXk0eARAy3mbHJPnnNk3/IAdRqCvQK/dtV2oQBFn8GK69ivm/X3geXiNHvCT0/TjxzKUBl+mTRFckY/V0HUDt1qwTulUTzUrmiN8TkYjXYppSGY4iHCJZAAFXEY62nmrd5UIHK55Ouqj2l5eLzIRJXOqUqGayNcghcKSmfnX/9CFMyhEAZ5Se22BjXPhriN0zpRMNMw6KvVTV0hyqC1Qqs+s1YFWF1iYVpsEXUPvwxKqVvmtTx2fpniX+u6eH4ZF2C8m9rKfHcVAOL1x5lKQskeS5qm8Vy8PNjTnQyfZOLkEaDfQ8Ydek1x8ecc3Q5e/V/IxKzdPwWSa0nLWZfau2zzneZh/Pa6g8At3AyzYx3j77dWMR5AKfBDD+ElqzyWR/VMpUD0sd/+uvpBkeIJVYWtgGpUSbnzEXJd8nOXg/n6Z9C2Pr37tsdV1B4x6RdlfpAdnCLpcv53faHe1BH+jAdSVoMitVsx5qJ3BjVLM9TBOa+lGW+Djmp98jVodaFCjlB4NlsapInkLOr8N0rw5RWWYNffffX7GpPPlqTxf/yRo337Lg28jkSs6pYUb9DWe0kFtzlpZsS9z7MviCtbIRpaX9pjS2c/fQHd1LNwSTxtZhoYfzDEn8Lz6UMd0kU5NIn3HJIFuf1K4p8nBYia5gP18fXc41Q63258HeHEhivS29BVT59ICluCYDDTt/ftejWjACsj9gGI35fdbLY0dJloeONE21FqGjHVADUPznTg0R60jSbkW67ehw8VX9X3tdXFH6lqj556ze4M8ZVM7A7WmrV8EpIcV+3vCyekPfm2GYU7WsreCfYvMh9wqxphk9kkkWDfIcn4LprIaP0Xjm/2JsisXI2EyZnFSEz/+opXanVDBXXaI+HdcSHwaR/MKP1pyMABgj75I1oIMaXHpm4acu+X1NlzNojLI+DCBU2Y6a6Dj26deMq3hYmP6QZF8ir/6QDIsE4G/NfNn9BDymGFfVIWVcCwprWqYMJyEkLicDts2/x0UA/efqpNzRxLHqDo/uRcbL6fTNcawybr4XziBcD6fCA1PUkKWQhjuB5TRZ0vGbhNTdonlz0R13bE0Ttw/oIu4mTGavf7/8Ttt+tng4xWNVrJuJTJQTvkAfjVc/EOkZLnBKhy4U25XGl2KEWpwKbNsQvOy2RHj4gTL/lRvYh66uz3T9bJO+260VbYe9BFUFEsQJH3X6F7bQquVxQzzzwRm6aDxDJ1pGx5p81U/ZUCRsSbb0mPKJ/7n+7PUy5jfhOj7FNgRMP00aeiOpX/64E1rRgWjAzGPDyJXh7oB2qpcvDKh3uVVFaZXvLGyyQTckDyWtuMd2cdU357kMGDuScH4/k1V+LmAflRRGGJu8SL6/LM8Hh4vK/rKBRghOY5zkgBm6qVEt2++Fxv/di96mm3hGi7dD3syjBhOav6lid1q7L+c4SmHp/80ZTbuhHiIQSj+u3MYvfC9bzAgfyYioyfjC4ACrK9yl/SmJDo01iZlZEalTsLSkXRtAf5FgByiRsT8WtMgf5gFZCmlQGg2tHcjzLnqs/szkghMY2vMmeiXb60VDdps/4LoEDrv/rvBu2Dsop/ZnjGmzH7b9lp6JqCfTw3/yq7w/YrF852FMu7lVocHk9KpbTlg2PsRMpqy6J9osHcOvVJHXPsIid5Xixb1AVKq54mlerAN0KCpUBcn1jqRU3M/Q1b3GAlIiydiw2B2RO9tO2Yd/S/AfYZ85lBP87rZs8zKpVSbEWgDdX3BwyRh3P3zUNTzSyoKU19++5DQ4V5Vv+jXcsEbXpzG/WYCCQRcCwQSdff9ZdXs/YGb5oygxDKALMLzJ2B17yF9u83KGRnKa0RoYbwhZZwe5nCCubBamIhSKAsSWM24g+dCQ5Xze2+CR/Mozc37MO6FyxkH227RLQYxJZYDpHnNksr05clmOww50lEj2I/8XYrSlZdepzNou59ErnjwvSS8Gz5m9pmU9QLfCcorzNnHU22i2hd5OZ5AOIGKIewiHuUph4SIqETfLLFG0lMqtScQRiD38aNzCN5Af3rIZMRZr9L0oYiXDfl/g9V+wE9lo1AuMcW/cLQthfL3nJOE35e5K+KlyrY+LyuU/yfWx/hfY2xoB+1/0lMEz094ZSFrqwIOf+FuSo96ZLRSAyZm3HiZXSr/Et+xOfrRQAl6CIcdUYxMPeN4gu0cH1A5jNcERtUKZ14/zH+qOxqjWou+ns6cNCB5qJ67W5KJ23821MKlx1H4ybKR2I1WjBnZOi1dFbG3ruWXzqIWpMMyz0lk7bcg0g7f/kmH9+oWzA469EiisY6z3E4+ebEDBhxUe5CpWCwVreEY5JDUf0ysQ11xpTrGVd1ABfr3XDA3UG0qTWssGBHwm32iDH0W+JhAaJ2c4Tg8bXBrAE+JSMiawimkVkbh4/H4SVSPGn3L6WXaN5nmA2gmyoN1G4+bD2eNtnZJ+dP60jYGUTs7lZ6nBnjQP4iCYrXGlToTt7j38y/QRfay79bYboERqNWQJLaNeW/O7CpiJ5i/23Yv+9eWedg+SFaOuO2mh9QIv393L3pjQlATPZJCYKGKsu3HP6+2ut8HNb7jF1K9zMA6u5zu1gW+g3zOTVOE/yErcawQz0LL0OipMMO8q7SOl75feBr6AkNH3uGZCG4ObARFrPgdGXVwDcpQAyEF/y7VUxU8LRkzUXtUfl+fRy0MTAf7Z4IyTr8FGQvey1nhLYdm27sq2RtK4fsSybKqoQwztuA+NQWouThXvurfUy9aC6FGCpYXsJ5LFYGWkgMfv6WX1evtVvGr7XMGsnUk+zLyNJQxtPL3LmGpMdyUe70zl+4ycQ/o91Z+2NActKG0SC40hsldSCR0we+GcnGH4O/rai72TteIrA61p2ItYBOtMBzswcH6DdV7cizZjdTZFndo282aJaKFL4laQ+sa8jWRjxwBAd0BjIHId07X4areAS7i6b96NW+a5wPFEjt7M8siGTl/8lW4mI/tj9NtNktGTLUdygZ4PHmXlcKN0D3p4EusGzZvujtf1H6QSvGMZG1C9RzDG1xqT4bwt09c5x8WfeBezbFoMz6DXwf2MihF527Tk2XkIrhAqFbaw23avkk8X2pdeb3p7QiVJ/qJDvrdTgc8qjxtZUKjV6T6pd3zTeGOYhSAjfKx+ByZDxnM0yb3TaN/A+WmDtCX6A2iekt9+aVORichZo6BIkmkUoYW6P49PecJWBRBJbGDqNUpdq7iBN+nXlpe0RvesXYe9+sOvZoWtzbnl6ow2XLDlFrcAqoGygPcaH2H/zjSlRrcq03j0FPBfNa3b47ULjpaPhpW3lg/5lXlcU+hPyTxfEyZWKuE4B8Vxg/T+a5KaR7CPFCkTl/4ZCP911+xXCZjBuWvGjxlE3ikVVeCKfP39CZGPIhVqr7TeAjb0dodW4nqdYYHeooiuys5FqRvDgdWMQXA9hF+ZZT8WZMvYb0rnd5WdamOr0hklFHP5cL4rZGCMoxBVxfDtVullmrASul9pIh3VXgH68tY0gMwKEYcYy3NYkporC3Kkmr36ZqettNjWdwYbrscW7F2Tisnm/rDgpfgqpYS+EqIIeumMspnUdJdEScMGHPMWn0Y03/wlbWxHko3PiFVnlAoEgSVSSNYyYz122I1/SYEuntc75PSzWd9PT4njmAEhJxStlJJkIRDKBD/Jy17ahHLSPFQ4aCNuoO4ZBspbn/zC+swNs9uZUkGfi4igXkdKAZuAUv4YpzLSLPDRjjUe0QZXjHPL+f24y0EzCD4QN/skUbXSLaBadPfw9dCcRXcucW/8AhneXS71/T95Svvm/H4/XstvoAJyiqnaS8KFoqA5oKGltSgaBHdpJQNOvcy7KsLI2lvGOGTMJn7Krmoc4GzImIFphYGsm3YWxI0fJ99F0JKQzBtGl4eAqYdP9O9TyyxenWcumNw/YMxG3APFqhNsskbpuecI2mYAbQXxHHNy9vMKAG8AeSMpVTVGMkCtng+b0o2O3xdehybLhQ5hH39b7oz3jcOjrAkL8xrZU/4dMTJInJV+8WKKxlB70jASHH+VWPIG79QYFqluawvwgEcXi0uErQSmrjEEpFDGEzNMMrHsUdUyImhe7s1Oyu7G8If7FTo2LOU5FLkeIWfZnLWqKOenE7yw7rMrqCKl7IArbqcgW+xDVl8hwRD7u1eowFTx+WPWPznizkRXjfbT/468jRGfJjShTveSQ9+49qel32lUMao+o1wTWy6L19IuhDCYsxDfsTGtnQfAU3nw7ePvGjlKUryh9ViBP3kizo2T4TnU5nXA+SDuN5t1j307onwQUf2E+s/x3FT+W3Xd/RpfMlveeGzOkf/jiPOPGh+u+twSuUCBhQ+ILdRI8fW7GFjVWg1FS2werQTJLI/r5GlF67FFhU15Kr1DMjReq99keVCtle+slOhl7fme1CpxjEFHxIfmY/2TRhx3bw5qAFwhPv98mGYybvyvzKlGxijOkQmDgeHdCUGZM4x8DQBBPRU9FzTpiH1r2yz6edZ4bznHFRiEXFbOrUdAF/f4Cf2tN4gB+hk6ukUeNsZRYxCjw2aHUBHCIYIp/VorJX1MBnQEd6aHvHh1QMdyLp92oyD/d9XoyQY8R1KsTBXmjH9uknNBYZiGZNNeX9fwo+tikcRIWT3LNkAXmKn0Ic1TZ/lIMVOrAxCxCdTUnYAEdVMVAX6o+93G4fOTr6BNe9YT7k6KOc84Kj2etmJCZRQHTsiIsHnDjSWiOl4jE+Zpmh+eEklAFr6VDoFKHL0tuw28HvMtOVXsRsKLVgGZ5nAWQ0TAMQiWge7qkVjRtUct3KSwKr4rRk/wxzYR+nEGn8Y+bGDXUoodhZ1cn2bBK9in7cItnHAPyazmoyH3lwquX791vl+ilbPTs71wTH0IoJYZWXpgeLB7rKtfZ0cN4jnfBc8oorMqBssrmHrc9aqXACqOAfirTKzJMwH+RaTOzx9jKzGQJG4saCAnI2PTF31yhTF52LbkgMh+cQpENHRkJiFGPNXqtLgj1+iOl12iJhT7v4EHQNfh683oTxUsj+44f53LlEgfrJj1j7iREzgu89CpvWZNCfPD485OG4GAXv5LxuhTsdqeAnRly+xewB0GQP43scyqDAPXc4Ql+9bpwMeh5RaiPDr0PSTazpWqGFXX0NV9AtqtrKieGa2H5qH480jTFBqbXMqDsrl5CMiZVCxrnUM3wJdzlRO7MvpfH2mpvoATUkeBw9x6hGIjZyshEW0e9xj8zWjL8jAdFuCOyfnfj4RIral50mwQ+GiULuBNan1td5j1SS3qiR71gtvtbiI9QvwJ05FRWO8sIBif2/NnzPMzHTEeYEdhQFrLvc2ab4LgstSzLmrFNfpKyXP9xgVYo6lMdg1dfQF1G8YWJz7IiN0m50fOno4vc9KAn8ejPpgYUjg0vUCWAPD3buKUtT0ru1uimmGeV8V/MDgW/rQRPLLw2o0JRn3Ny06TgsHa95n8HjHW8379wKhl6IfMtKgJwdvLgcmNLhTR/j9WgDLR1FAlWEfjDMOdr+RQ3j1+UNvIuqkT4ajUvciRpcjqOrvWCdNgErvIrJ3i8mHcYDBeNbQtnBzyMEyRPnZWxU3o/A2tV6qfxoEpW+cBjxHbmYkqSef7z4n/ALz5yswtQvG7sV+oM63Jo+neIRppxJrL90OJdArto9z93Qfb0d3IracvEF7UqWLhLMhK5zzlARIdkIFk6mtDLJjbXpD+5U8jH4PUAAGeFAqbyE66Hq9O5uPoYMYC593AEQL/fiAtBtB2+xkumhvnWXa3at5k5qnzRTg4VWz4T8jaRAtThAD0ANvkjsiQneCtB/lIEi34MRjBs7nmeMYb2647vdHEoHm/8yJNDJmqpmmG6ZElhXnVPJWOIan5DEEX5b1Yews8TrF/N+m5jdU7ie6SAYRWsOI2g9KUd6GXNqd/+G3B5JjNscuE7QY9jg5wTciDM3I/r9UVpu4odVaQ9RynMYZ3vtc8JUWVpRwjVf1rLOXx5ab/xQ8cws8IMa99YWpAqgpWAkcgLVoKVjQrE7busmUh+RdC6tlNV3mobejSiaT03K97Iri7t3/0AES2AWrYolq+se3TntkF39yLnmGFTlin7c8WxwIxjP5jmRFA65jYcdTEZL1njtaxeEXIfseH/Q9koEimLSMKjXo4l2rBOWNXq8lah7FawQ8JbVv3olURvvTJl0xUqiPnrdmscqhIEpFrS7qr7b8VOsJDTKcOpnGILNGTs/0+6GUuB+k9zZm5Y1uClfMsU4HcVt81hr+vnz0dJpscNFw4+eooQrpccU1dQFEZc2E7oOPNnJPNXCX3WU0HPQ4sffgx7TJe3lykbJT4hVxfAoF0P/iYrhIAvrcMLG55+HjU+VNo4oo+8AuTJOkcgItrWJK5LhVf6k6CF8e9VWXURhG5Y0HP2+iCeeIHTtygcs6K3jqFaGdcq+otXwQqZsmQmEtoSHd4twomVeu9WseWXu64IvzzM48GXG9XGnkI8nBg5WSjQCX0rHa+B/kJoOIkRuA60LkN8iXJZRRz4z+3LkQbhidNptoXNP0CQaf3K7YoQFOwGV6GjL2J3vF4lse3zJqnKl3Ciy5iIkj9ZMuWZkzGnKiW2jkNT/sd5/VL+fIsdWnkHuiOlFXLLBp00zLRaKsMY6bx66E0kmgK8bQqDNJ4Erz5Ic5etVKe5jMbslzb+urBSSC1cemdMlGFa4lI3aUXtbO25xVtR5EOqxldHOb1UOC+/7YZ5siVnQQ2Nyj0Y9kptdwP81yn7CEj1/7ue2q5OZBh0v3CvKUVsKrBoBBOxjqLAjLTXLf9o+fYVMo547EOcHF1lmk+02XVEdO4T9Lu+iWgujzxhKmRTimxho8aOchVL6RwVjwae0lUej64xTs2K2hUYWXc2mRI4fOWxWzPhLgZGKYzb8sCFyUgfRDhhKIA+OKolJaaB/AyhsqJ5c2OCVaTQnWlA4+pBEC+at77ZeeWsP3R+C5/jnAKDEFuDKLOO8T8RuFz1x708epKtZXnu4nBO6QHx7Gc6hrMM3ZXJ5wrIFUTeR8VHD3txWBXnrPpO3PhS/c00HQHlL4Ld0GZxsXjA6fGAlpNK2Hx8pyJTlJr92/31mgpB3ojnkpVyRsAsYJUnv9a4aOfhXwzK7cXpnmO3bSLwWCWcOsIOhhuJC5bgB+gUYux+E9tYiXLXl60LNkQnnP7NkbW8UtTWK/FoE2IbhBJmajghr2GVjJvq7/30zS5hpRbKJTf4DmFso2l4zqeqE8lam+3ze+O7e1CKjwP3qSO5+48TEIFgC+bDOjnOigEVCnDl3+aX8zcjlU1enaxq6xkjaoVXY88p20Bt2OO+7V9ETHsFFc6S3KOJbuP/7ar/ZwJSdeq8WSbW6mBqqFlG7iZqAMwkRl8JfaYq2XMS/RqnWAzede0ORwaXgvAsq0AysnQ+IuZ1faxkhuX/DfDxBxJC4gygtegGGcp3vN9Bioo4DcydhSGP8ZNiYcHcLqD2WkYM1H9uURy6FDf/B9tMNlccASh6POqEV/ihOrwj/jP3mcwTWrLohuW0YBjfMVBzbmPCygL+fRcfMemnw/cikdbPjzkdhekwQkYNavWmQ49otgNxbu0ANWrM39XgbIz82U8se2iLc9E4IItBiFkZ4g37LDLkOSut+iMGO/A1RiQC5eBM1tFOSiEzqcadX0KnjDgQRFRTxC/lVABwPlEGgKU0y3/I8GYh8YPdNmXJJTiGQdNFXo+vRIB7LT0Z86BiLw4Qy/K0HT0WZuFBMaPSglrLPucD2mLlnWrS433Uc2we0KwhHIwOvGA3ONPMQgV3sz8+EUZOcCpFKl0C2OatYT2d3SOfyvrgIdPgjbO8usqlPCZmXKqeoHJDYdoEEaF5XxMix9Tpc32IvNxGGpQC8lEkvJ9LDb5vXQWD0VFH+UG4JuLfO3ISNeoSInSDjWsrNNjnOpFV3ebuMo9SU32EwBjrIjhgK/STGRI9MrDBIYnou1e2MMI4viWj8IKhXR+lGeQgo4KoOSph+ryXyOgntGmFCCZH2DWdD9s+iYj6lyzXyqa+4C5qNGCpuUaZbetfLO/cV5GUyiIWox3U7lfCbAqdJH/2s93RWwIUmBDO4RPBbkfzLOlP4lA1OdBKIT9cA19RZXLQAn8SIvJrOnQ2WYYI6t0DeWocsHKe6VjSvnn2O/z8Kyc9jkLyN8DG5iUIFm9yNdL4DOA3B6edinnc7WL0taJNnuDMO59krVZ02LHSKNgSNyzLW3APJ7foS3tjJHGK0ITaEk04bQ0gy0JCVpJA2sBTWyQgjJ1G39YaRuVr7Sbp16S0YhNd0NVvWdaybub6THF5hf3cpygEEkOV+GamLvXgTAWk4QwaTTW53832G/Se04l6VjQ0QCW2k6/xxaOjJKX/o1mIog01qJMQqCzxWAJc9XH69w8mzYONR7G5eYH82feU9SckgLHlGlcXheFqaVniawUBEbL/UOfPz/ZgVsXXCWJzqEfc2xTm9TONQ7EZLWGXXOScz7jDjJlKxsihNTZVKZ4IKP6qaswJ7VMQBRi1elf2cVRYc3/VrohM0JrJ07L+SM5ifuJMqbO1lDyzVPFcjSE4ZOPlYjdseLL+AetI4yNnZ5YR/I+o4chhNcqV7iE2o5r7egT3WKuKP7GAcGGvyAZUodL1ozI6Vl8x/9tywGVQDNFaK8yFMIBvrm+4JR53VeymTXqD7F3T0N4VXYWicJLgHfwX/bIBkKSurQtdSxGs1zVHQz3UspDWvj9sZYaFQ/ORPZQ5vY7T4PLCfeRFng1FxVOq27B1CjywinhobBQO1RzZPaQa7FdH8ZJTnNaLxsH2l0uFoszECnTJ2AKD4YzQpwManRfClw+mGdh8ZWggloOaaxy3HdKXFdKgjt97MCXe938U3y8viyB6MACBx9no77/3yYiYCf0lI0x7w1ILy6Usebxy121C2zp+lnfDRql6MMU47GBF5ldGkS6I+w0L3aT0JFLtQQaJtFU0Z/ylpL2TwPIY8RcBwc29eQ2K7WwRvs0MSTjxId+o/GTnvT8pooYScFDfwhjBXlndKCXTJOzqJjlYkpr3m+wY8DObGM57ashYceYz9Lyhm7rFk+cQBjgI6lbI2PwAaxHw//iAyYyypRDzZRCzyhcvjzcLThFZWpL5Pra/4e+WvYskZ5x1GgvtyYJvr1M8BgQyBk4GPDmUBqb2IK7Cpx1zw9UIwpWFGjaIFARlPs4pAJHcCdQy9Pxhi8GmVJQUqcZvMHRvoDiMJLCShIyqgOj7W7o8aXU4Lc+n7Oe+zDtJ3RJgbGd9/b+2d4YBUIYPwy5dCFaaCQlxbOunlaKaSD5hp04jP0J9phK84cHCiFlD8BLpgtmFHPaHMN5OX/BSfP5m9BGZs4fBeYvvUrDSFrl0hPZnYZXiHNEDBI7BO0TSCs5EICIBpoH2ZaqJKB7rXjmQjnLD5SDaaBliW35/jUvatCBeG0o+rwuyRr1VYgooIMDNa7FJ0+5C7DdswlBh7kPQUGCQ+RzCOSi5WISKTaooA2jFswc1ZXeVs+Y/jP43fN5aMCxEeVGHF2jfM2b8vM9HU7p0csR6S2W6m/0FLKu3Gmmrd/yZeX/bWsoP7+qhdyqKkHcRQO8lXZtvP0xRmi/t9Mx3QyLsR+DOVS+dRf5jgCqHE3ibepFPeFyDe5zFZ4RnPXx2NhpX3EYT8fhC0NWvcGjf5x5nOrorUNUQa6UF36RBd31w7iC4eCfjytL9ZST1ng02aDEwGl6nPqZ2gZUTA5NSLgSgcGMmZzT0bIGMcA1fqdprVfooHUiAb15YAHjmDw1+Xc6C/iKzDh2bJryDyGdLdx56XzYFaPqc0XN3ZNvNfYBmatoeDVU1UUfxSzouhdzywrvvtV7UF7q9SHtQswhbY4miTqiq8XUDEMLVP/2XuIPnwIU3JaMtniII2Jbw5HEc1TUTNeelPWoL6u/31MflOBOIwRd/Qx0v1o3PYqY+vZmgJy71seNZOXvdghTHP738TZbLKmIWWuTYOk10pRdbRBPHatWfdyEhA87yZafsD+klurJNxYzrMyXyTIBX+tOfp0ouwHEgo+q+UGbaAA9B5ZTeotoH7dYyBJl/esyjPHngbdylA/sdzjqPXjN3uwDfFaU4ShgBgcNA0IxNC6O2S38gqCbZ0wI55V4MWuNyZkgCycUU7ld7EyEVNLHxRrTzegHTw9JB8h9U/pz7Yb3AA3Bb+MeZ6Rld0oOGqDpj57Gg57YkOJK2ctNHnTqx/PWYTg4b5qm31Siv1/UTOzoiO46i8xcB4WRwdh9Csh9KFJvU6FT+67Zvg++au1HvPTFh0TAaOdLxUIMrf1gwOeYrwRNeN5Ebv0ovnL/udva8MPLt5rA3OhP0M50FjMdpT1GHPPdn1yRHy9/K+DGJ1e6i3eIH8dVA/IRoYSz4evbiyUbdlZ1cci3435bRn86s8rD2M6Yv6rSuhhjvuFTcVSzhH3oRCy338/1ewfuCnIZdDkHXfCihVs3Rty5TyELPUwLupz3RvZK57vheOztK/aD00uWGg3GHaKUqHGETclsD4a+AS4bkUTBIuXZ43/lIycaKFeryNtvlXEzyxlA9JXgRNR/syAwus/bffaTPjjLr61GS4/z6SCJ8FWkVkHZb23VXyN13Vl4Ci9sKoiflcyCajZbwkWrjMBUm7Tumjl3nnKddspeF2Ejc3hbf5ya1HU3SS/RAH+e/TMt35XhluCinEG8TCS5LCqbJY9vuUGCi6qnMKoqgnpHS+5es6Si2OVDLUhNiPEQk43CNd8zF3sFAedRa0TB92kSFNQOd6eyHjPmGRyrgFPn7ErbHJi/KU0sqq+YR/Hz+7fs66SnjiTUq+lQanfESmyDAbxvOWLTn3nFg6ZgtY6k1LleUkq/ppEq+5v7Np+fRS252d9D0l3jItny2dPVn+BNTzwpVLoYR+94LutJeBnedtUhcGhvBGiSlzRgY+5RfcL8GPhR312vwwiFX/1Mmk1nIoOFXPVnaT68Qaz5EOW45bz2icGo1kOpjqcIcx5ylOC9jSJm5v5VOZAbF3jLxTCVi+9OGGlrbgBZ9hEzDHN1s93q1q80TnX86k7NcpbI6g+NqCUx8jrItXysMF75M3cCqooBEsJhKsCxXbzuVMbiQYC8cWW+qA5GGnEHDNJbyIqiQJ5dXUKaZgAXvCLp+4DovDAgTPP2q9dBz6O16pBqthY24zLMQZjne/xPg6g+Id48cOGpF7xBob2UHtIAbVMJC8IItLPxMry7VmOs3C5QHWF//4rLgnOU3duE8jfs8Sr39SPiO69EDnFUmEmIYrzqgBSHwVtLwk7jrTEDFDBZVCzBpY2PIwc5SeS66lAXWtHjdmksHtcYcDZ/HVKGcm4snm24E/4XTup07HEMuECNdWgw6rBcR4v66lti0RZiJV2Sd5ktvfXEhNccBTVq9A8bGNOh1PsQIdndf/yo7o+maqq5c+28ke8WdSO1iLu1NwST+tpYbVNNaI4+LHwHQI4Qrp3TkxRaYyowF7ykyfq4lyGkGIeQR/6WEJyCRvSpbm1G+3RIaq//44RidmI5zayBKpF7dxEytnUclOphe/lhroX+SqMSf3vDJ6MTsYUkia6FumoQjAglPoNY3K/B7BRhyMhOKE3DMXjTglt+BwS1YN9bmplWK5wZgE7H179T7yNiSxll1MtaIt/2bN0jt8mEX3sARBUQaaFcVSP135L5Q05JT8gj2W3SIsFxY+/yioTUpkBs1mvs+rf+n0GVhGnAmxi/UyfAIyXnMnkjDuqBXVeBeHBSF1m0Ew7p+GafoFGcUXShYppBVYDhvR/e0hg6X42xe3eNpv23YPM8jfOxZPq54Xz/4xKVaDZk370xS/Lhrnn+3TQEnxinLNGiBDlMZFzmkOQ7tfjU1dtQ2cRXFyMltRrDuBoA8Kg07c8hCF7alZCOpMauDSbYPxv28eK4pX89bRljxZauDDYo1bRbgKNEw3xM12mdg7x4c3VcjtP0wKJpgTRMc12zQuuv56PX1h6Wolk0Zi7x4joXJXhUxRW4KN4CjjCHD1seKEWQwhEzjhMJxP025RIqfzYhdaVEgBUu/yFse5Kj1dma9dev6SCJACbs87TMnqvXj6s8umWzyYQmflYaYa/rIu1JNtkn99ueN3B8RIFqX9Oc6LuJJT856ZhEmg00VKbg0JbbTLMRjzBq7WqeN51+Q6dDDzzX4lZ+X2Nskr9TwQ6R+okQ55Ut1TVRgDmYJ5XYDSrijMjQY9P6rG/gbsO+fvwIXLX2g1lAkJLu9b1kKag3BWd/4SnQUMgCi5nJlfx92OogKBlsNwdWa73zkyzXm0u4uVMe7DL8sLz+u3VQXE4QqEUo8sFJad7OFaNGpQN1wE5CEkopudf6vW7hfD9fxfQuKPXF7caXM02gLVYUbq6B81Nj8rmNL9nZQkoxv88wLxkCcDtxRaHakDTGTz7Al//5/cOxiP7XpO7qokZ0UD+VI2tTpwu9Uej3sBl+dQOnNFoCRbH7RrwJpYulX3awGKwI1c6jv5uuB0RizyDOueQHVMJol82MQYl3DiUfMctJVEucJwSJ/rY8L/XlA61gvxve1XBHEHfRVCfZ/IcfEboSAGrmiWW6v+HB0sV/+MJuQHPn7fH2E7nf/9qL3D/RkAstTBxuDEajmIdR7TXOTLZSYvlbh92dU9lBC/jcLX1XO5FhOLXxBwEaOpYcpRAyGnkFT8adLs8XMwJH67aY/9v2SPwaZf6VNWlnZTBpwE6OqJSF5vOJfX2GFWquyDi0k9jMXkmN5bWeMlo+gTfDgFLlfAht1Xpps78dVKOeKTgcLwsu1MqhwwPbc6r2K8Ea9QzQgtkZJcmcKwSgsP11VSgz5KbfN7URBiZkDMdIUczmE6RWKGJ5WStshqVl1HP59sswK5Rd5PUj6AvPopv0H0miygH+xr8D+0UdDoUhwu3G+FmuYjbu6tAYEZx22ivB9v9yBa0YkuJ3eSXmSfdzEWzIPVXhw6bYQ3jTiBJSr0pUh3uesvU3m0ADLTtsoWN26xt9iKSQroj1EPWy3XU7YUAhSdNetyNXG4ZIw98oF2Iawnirx+Tq7tGtak4sXS9bMU5XPOD0w/1R5DaqjJhwGy5BwUo4SpCptWdl8uDaz4MbHplx3MM7pFk1UgUhTXEGuKrt+fRNt/XCMTMnG7Tk89P0j+EMTMrFD2/Di+wLPnnYI9QGB5axtdnb6t+QTsrfwzGBXLA6vsgKmqFOjaCCCbNIFWjQxqv7Vf9/KZnuy0c5vpiymSIpGMjzjnnt6J2V1RNX2rD3y7lv6qvixbEv0M57W1tvPu/wBQEkS6wSlar+jweXvb+8Jj/2dXwVaDuOA7uefbM0H7a1tJ7PjWRpp0MbNXFG0lcxcJ1nIFcuoT//MfAmFFVX9llPYUnSEk/sUBbyC86TWXhlJnA7V1cjRi91s5ARAmxL/abrj139OVBkUlJC7J+Yb4fStkEFlcgNhsPIyLS6GazCGf1yuVSrAa03jLv90j5G1QvW4Mg3GUrjTvNVZ+H+c71z+RYu5jaIrQscDtJKoDxLObSB2UBZf872naYjE6wA4GXZbj30x8IBR2L8zm4eosBwldu3i2BygB5faWfbLRA40hZmUr1ZchSjSD1Qbc77C5PwAgvJFocgssu+2107fEt/UJb+v+QBhPx5CexvfliZS3fUDnq0j0GZuZOiVsY0PUfAhgutBhessNh0BtiQN9G5EsxrErFKkzxcNE/7uY2/+hUB0gjgzNysInrVDkIad5gzl/HTPyIqJV0BKWvgAa498uHxdmMo4QN3W+FVPiBKCTvp1GsEyTN+xzrTgbFhwO2oLIRAUtCKqbsZMnBsfytPA8gi2VIVUVXylwaZNyIyL/EQM9ztEGr0DLCdSCeLBkjuJV3JiEGRY63fNDkhJpIZ4g7dphcMYJFL1QPL+/1UXB5ql4rJrf2s7yPD350MAG4g76emzKsQr7hsuNqAqvjsQZ+7e4Hl5pghoM2ubR1iSDVF1mDgzi/lySZdRQJl8Fuoc72z8ao3ewrPplrquOKNirbRlwJ1AHUlvAnEKuRlnJ0iVsCbSaihzrawrfQPKmOVHIlL/sbqPiyLma5dxWwqHlZHDbDdnny5gfgCRzfutYg/1InTud16Mnr8W7eYdloAAzsPA0urz9Kc4ZrgjxzZ3MQ9rzarg+FJ+lrI2Zg66D/LLoyXdHo48z7YMxvQKKdlPUxVtnEYa69yg3ci2T667id6ZxoIYrTm5iupuc5IrY13xLwvOOed8j3WXrEHPMETU7NBwdJRGw1sHlOBHWqNgki5RJWvoISJM2jRUZFyD9iHFeas4hXvfGslx2Qnun65nStkfnjJTLjw+DOuoSC9AQj8jUjKDTud+Kxlzh13gFes5f4XxlFKSKKnz7wJukTo9s1seCvh8Ou0u/T4HXey99NXy0Gmvk3opGXByiihYPRyd3G2fWmSIYQkypY+vNsFJaOFGFCqGLoYbpc54tRLmQP+QrQA7EdXMfmNZFt/vMq5tN/ykJly+qOnQ5azbJaP/sb2DGd5GWzA2CQb1R5c5VMNCtFzU36eCMJLPrTzk+j7x/Lo9NWUPTpt0+LUIEJyhvluHbp+LQOJM6Pw6qINxYj9a5MdZIOwtO/cylWMY88Q+Rc9Raz7oQofpzkatr335xOIjiSaoCLUU2P0P73sGK6DGnXvBRAhIPPr+2T0CCXfPBez+CMGinAGpnuyrIuHCfNaH05RKEW1Svpo/J9aNIpi+UzkSnQOWZmrZGLmHnNEfw231hsy713wbA8cPbfIlCQh3G2ddDR1VZzuQD6g8EHMl4Zf99buCszmdP5Dsp24kS/w49PdsYfV+z1RhXGo9E3B4hD+IUuH2pYCwEV+5L9vk/GXPApe1jdyfLuGRgdrp0YBsH5mykkZWV8t2bBQGE4dWH1lt+eTWHVMtMfQhpM433PN1xTb2iEeEZIZIeJ7CdOufGBbHuRHBZiNmwhQj/Zuu6PbftFBTK0CH73kBhcEMqWs5sdC+aT71gcIAr98JXLwKHL5MSo2Yi9vqhr7/daNjZ+MB1cKhwS9st3H9tHKsdeCTB6S7GLsHDOZQBUpgm+/e/bUYz0WOSAL7lU3S58Z1wwd6hmMp3MgAv2yFUd3sPTDOCv9/Od8S5d9OjFTkiMxaSnQcVDw/SS5pSGyD5XfEE9ApA4NGYwgAw82EAEvzVRLk8YW15f7No1XSvo8zMWGoiOut4eQR7xXvpP5mLMJV/p/ajp3MiqSpEGjvkPSZi8yG6BkL+wGkSZZi5MLgwAqIzgtr3urkhUnUsA1w71LJ9tx5yDRE88lbFf3kZLzz97bQh3eyiZ1ynQLEPH9yh8Xq0QyzJJ7GJSQ019hqJ8u02/9xwH760vOXk/ao7cnmtV+h4Wxh0wksxXxzQDvTej/hJMAKEV7PAkSNXyuQ+EZLR+fqx/oC+s8LdYTJ8Ils3DsrfzZR4b4ABX0F30cqppCq2pVpWMpsP2MGLGaO3wVwfjehmBvHJMu0c5lce+TgYvRnVKg5yG0NPA1GKZXkPsTfYuV9IY1TeD8Nnl1JAmc8QPaWHZK8RSX4JB50JtU+0BFU5fd99FjurQOfA20NNgUnCJD54tobShdDOiCbyDgLD5dj7tMmz5+6+T201jVfj/T0DBH5lmSsYsrelXjGIBygMlGOa1fLWzZyB24j4C38d6U308ZqHgaYpIh6MF8czp0zUPp0F8vi/pVIFaZSRH2+MGM8ZvEttuGYxAWORp2rzZYH3A4YQdMT1Lerpz4dWlIlZ/pEtXTGt1C11D+Uq+P55R4y5wg2J9nSRpjsksKT9SUUsrBThLn5/ulCg8nnRjSsDNmw1NAiUSkLX7elsZA4uascGo/SEguR+lJIbthBeSMy5ipGo4o2zLJa8xaKOHPgSGIUvj9SK0MH3oEbb9p1o+CeQHwPQUKkVz45mbF9q09ybDuSDdhk4OZRvJQV1rW6sh7+X7ve2HbyMb1AmzqLaHP1dnZ1CPbYh5/selY/bKHwyeR1YV0ASeE2opJtLNty7wiB4veO2i6w9zLcjn751DIhx1O0FairdDKjWYa158Pox78dHG1e9B+J/Onnw9P0dxPi8/k+ns7h6CILGIPNg8IV9stSoTD+7z0NoI0x2/yLps+0w02AiukXMpXvoecUbDNhry7GPLLf61a+Gfbmqb/9+zu1LfPtghP+4DP6Laf0QMei0wbXmQeV/QSO+LzTS98MY8PwNVOE0eJlgOWDYXJiagfxAqAIR32Dca3yiBhAI8VjRsk7fOKRnKpnOJCmosEY5FAgKqgZEb/bcg8IYT4/kug9zPLaQw6yFVB4CiF/aW9RqGL6c6R+SvO8g0+PMwhSiWA47+p0PHYBEsp1N3pIdcO9KhuF3NuAJoK1+KzMGSIXGWE6rAA2CzEj7uXRwgmYwDvyN9mbXWNLuQDeZbDgJ99KwHNmExGaygU+tqBNDiZTvjWPIjqk8EyHWMod8RCvpZhJKcCyBxbjU4TrivZHPtV/adHzSV3RIJk+UQKdKrDy0f2wM6xCBLADi+ZOeFiRboVXWqVcrrq9YJ49xTxgeyedIHyzCfOE7obLkmZFzkRILzJAzLUNhuBdcs1BE1wBqID3ytlJpgZwTTB/G3PRkwQTsDEeiXELNjcJ95LwFakyRvx/ueGuKl9b0H0Rf39nB3LAcUEAV2RqTZCSU31Iv3PiVysczXGOyqGpOpa2L4MVJ4wpFfVIotNeXp3oXU2xiLqCASihNlDCcD9MrhK4CeUQ+UT9N0+w0eX9Qwqx/HC3cazlSzxyrjAMqP91pxP/BEWSUUL/MUVvlM8B6p5yKUT5HZhCkMgYNAMmOCiM3lD7TTEfaZi7FI3h/UdE5urwGzHRlfXgzTstbfSJ/gl9RJQg5Ft2Ewo8FKkkryjbWT71NrOX22hCVPozUvQnUsUzWMsaOOkQiBXP0VMWoRBsr/fMQgECrIOpfwMbJ3LsYlajFrpM29IQi/WX+YnPSu4XfM0+2zSj8xNdLXtRr5x6yGd106OPLXlbf4xWXqdVIDwMvaoDsFut+Q+nuYFIw1iS9WId2hJUgevPssm+ZG5SZWatDGLw0NqcdxY/TVhymHrbYj1CVisvobnVs5uiZPmgxLVLDkZ7a1aMTD5oRAswJ1XFiTxavSO3TfC+6Y9xCV+JRGBiKOwOlLrTzCiXFOvhshb+ZwVVnISn7g2lo1oS9BrT+/GRbdWAX0WKAyHYCdx/lxnR6QRPJ9k3joLv+Myv5g3WRAz9eUfu0DW2hRlySDprsPrnHkMqTh/TDwBS+0txZaGTibrFHXx5BMOSEgI5Hwv/bubclhznnvTbe2Hi/39VN0RnuuJsZhQSogUHv6XU/h6fF2zA1Jh7JeoETajOiG08s+XVufSDIm2f+r8xoGMZrxp6+pR23qzLfe/vfVEmLF2gdu0HvW6lY64Gmk7nrI8Mfe/lpYa/x7l35Az9AKW+Ra3QqYaMg0mdHsMRj7A/snE/337LiF9fO2tIMsfnKS5G8h9HeSM44LETYIiQ4o0V32fbe3QS+CaAJVoFall9OSpaAcfQejY/dFDzAQFcUI4MQ13UaSnXh9XxgvqgxU9CI18o5msv5c+ZYwDCbd9ndsIuiZWLg236m8XUCoHcBZYzRigfObd8Q8tXc0+6bzPGzaPT/mLmBxmRgjm35++MIAVQ2ExQO45CUZAunbv5/2uXEM3wm13f3ejKUNAP3OrgB5et5zEbLDrsoHn+pxO56EZqGnlP56AdIuukm35z4nMGb39ZeR9M5Jd8CQz/LyzfL9rDywPX3hVHiXjeH388+eeQJlqLt+C+pePQBkfroXstqG6a4NFyF45OMcImm3d8N2iy9nLmltw12b3A1tNa9TiY81ntgFQ9QPcHcvxE9C97j2hpA1dy6SCeEDgPoERaN8fsx6T2P/uKtJA+28pFh4Vlc6L2LAQLifqjWhaNpQXvTB/cOCGEhDrvm4lSwlajtnPpCJmhKUlSlrioWncMHGZ/2A8p7rvOEPfBMzIFQglWvm2SUBtDIJEX/KDRlC4oOrPHdtstfTipbbGRXhnduP0FqLQtsgedCEJ9WWTOsl2+zk19zfB6guOu321qGrwoae3vHuh37IS8R29X9FRkQ2qPDb4bVkVQrkqUBsncntKKWTSvMCPI0xC8RNjQUywggCQckGkXJL6CQZhyPssZYQdxWnBgJrDPH8pn4kqMLRuzEr0wMneBbo+0kMEjT5SEsfjVog9TZvBPav3No6f+GURAnU5IVIEb7/SzdvuLkFEWlscH8jNNQ8I9ZqxVBPI7DzIxawTOpjU4kYxPYKP4jrhwenzNJElVt6naI7BIsg3SFsNugFcEJWu4x9D4u+d8IZd7r9f3Hn7OwFoqTSH0G9aiYnZAvu08niT0uZIwIcTvRHkRfn1XrJR8H0qwWoVC1dnQMi0eRBv+w36NmCNDv8Pj7TGhUZs0ZN70F6nrqooRRZE8o14lvhbiPdXTNkiTNAssHgILac71kn2/NCiBOn+dYtMwvhC4E5PoM5T2IZ8N5I9VWxCFQ5uOI+rMA4Db5YrwidSZ3n3OwN2UvdlfKHday4VyBo+KV7nQT6i7embYd/vbNJcZrA7W0fXcmD3vvgywFWoRcdd0CwKMbaxBwA+YOozoSOqS3qvp23ND0ycJAPvNGxrIQl7h7CowwQzOIGZ0EqIs6PswY9TqVbUxAofqNQG4+s9HmEie2wRFAuAE8jSvuX/OLZTao5rPaf6Ne3ra81SjQbYXtlHf21T61drqjW8rXOD6Nz6FnkAOV/w9KhUFwYqHXgvG1f+yN7F0GmDK3xuNSPkvP9UzdKUGA+eLQIAR5ao9XQeFXcWdqA51u8vWk0kJbuxSv+XxNwVI/T48BLmHTVzvtJJ5QM3xE5c4HiPAsHk+erII7jka0AawxOuGT6EBKCdpolrgvK7w5z2vCvuWw7Ufjp0DXm5x5fP5MKoM4bXcMZrsOw/3MKnxJCxh8jrjiAbTitl62smNl76alXP0WXX1TTkFqdsF4vJS97A/dFKxer4K2I6fxmG+7ed0HhK9iaxBRGeefXuTHtp0s941uoYyGN1wH9S21NjFq6ooIGaCAfF7PUB7HZYqxHsJ2a2hKzCm+Av7xGZAqW/+lgOupU1Pz4Hi7ibSOF6tr55kGi1au3D/sqPl9WxQlcPxSH4E1tfD3fW3uOMgwHaQs1KHtKdmvEcN9W6U0/Oaqu2LIpou0JGB2XPrSEsT6mT/MOAYhFYtXRqnM5tr5DTkWxDHZpfXQ2n5QhigauS1yFcjHy8nJFt47vgz3i4lxXMN/Y3hHkg/TpaP2UVkd2njUqiRfXJLFxZH79th+GwQhsFshxhUik9HINlanQL83AbtArmREAaeFcKhyn/+wtt6S5b6ZnTLIpFtXj/D5r/ZlAqbDUBOfQ64FBcnNco4cfcO+IPZAEjRP16It8YGZQ2uxKESUJguxfPV1hy3oZfPV8Xq+j/Db34pWXqz0sDJgDpq+n7idDPMpB4rbtZgDMjbEvv12LnhRmhYIJAv9QXmEcd4LgwAp6S7VqafgCZqZ52bfYmaQO669YjGCp5rbc4VPDATSC1Z7QaqTRQIfMV0g7/vS0Lrfot367szTIHlQVLtFKPWRn5/AQ5sh+IcEh2pECyoxKqhXxA3muuACw+c/GH6igtKqli4t+nexAbBYW2FcOiQMpFdDgD89T+AoM+8QIjVlt4jD4cz9cnahDLtnVbEp+wB4w03FYUYvRYaPfB6r1MRI+karKEaja7McdwdN3W/1EKNL5rcSsga8dsBzFoUytzWDU3qhWBXji2zvE1kedGF49Yi5JSKFP59XJav47Itrnyvxl6hHPcgWcKeyLPOkjjGYvEdsGJwClxd/9ti457tPnvj8yo1M8RMPMiOG63wFeApmnvYMzv87VaZajtoztZt7bMRGg2MGYnj43S0m4M39q+tgcnMkk4fXjHQPkCWgBwmanWaqc+aiqMdjoijBfiX+sh2Xc5LGbcXs4IqU0OhNtT3YXk9gtRuXhzwvDkGrVQvsNTAjt0jGXnXNKW4Wnepz9KBO8v7VlPpUcTQcIkCwjJE3xCxUJO8s9te3tMoA8de6cYmQD7W/kdg/fe3zGvkf7MuWUMosAKsXdxjpy0tv3sAgWNbIg+FqKXNrh+WznxUxq/xTh9VY1blDacsVfRiy4CSj8d5SEv8tQnztO+RzattCGmd61zF1IiIat5CtP04yjcPYkc4tz0y312l95IoqtVXhmh15qOkwDRW30urrVOaKVEPFwJi8e41ruI/kDHWr6LTHu6ciQpkhRuV2+bFLf4RnT7VJt5z+H6FWAuabe1nHTw2HvEf/UtUsuvztVIyNIsDmh3x1sRJldFuB5YkGdby1U7//TzbuX/mSB//wAUg7uKr5LtJlNwcgpNWmm9+86NrFAK9+HTLhhztlN0gfdPJpuYt76b5KdpQqij4u8gdhVJFucrUXc8Wx4t5kM/kXiAjgB6WVeNuWvsSKdCT7CScdDh51RBPBk7nXcDzZK4ifxNszBmvMQ5ollcY2c7yl6Qofh7bHZrAYfOVFAig/vDswrUkDXzDyxP31saYlhHP934w5x4szUoJeN531u0hHnueulDxjTfQiqgQRMzH0QK+inSHlCkqhuG5ZTIy7N7WqjUYN0/WjiiYP47jRpfDldMARgcHkEeR1Ww78xcrW/S+h/SIFOHRFeB5zq6dQa0WEY3/r98ygE7fpsrH2xR7DNpGf5c69VPHaEzhnhWUbzut0i4DO/1LgrGgaEw+v6Mpq3GgvsTnxssUSyX5k+W5JhEHull9dgJIELF3pBWogWJxMTW7Ok3iyWbZRY+xLvZhQB6+4cc4wutGa4iSdd/aeUqAO5+0RkQyxa0b7fazp3qPcBG01FRnvmc0jUlL4ZvJX5cs+h/ziM0/+NNY4SCJ1kimnGsrJRQ/q9vlmJPMCsJzFoC+6ZNkB88BqlqBMz57F4vNHcUPiXbipj59zWG7KyJSARoCFYqO0EkLu6owc8dF66wdl6R9kWx9dvi26ZIfNl6th0yg9e5x6BkTaUo1+786M+aN7Q1gx1z6DZ1KyPwUAduYxqLDX7Wtmy+4HCI47XWrG/7nHWPQ4eCxHieJzfBa5W/m+KcMCj5CEkyolcFm1h+Zn1D6sQ/MiW6crxf3/qY8flKGRYzLgPLgjhnINSV3WYhVL/35c5NDeYbW7BgG0JJRs81S0BEwrxM25r71Bm58uXv3eijF7bh2WuWMuBmhVPovQlauQeFd/nPXkslHczSivRrzM5GKqvkCzeXcnKwQKOqz9r95QhoitOU94jmzureGMBKkdOcp7wejVayBam0kCrRIY5uwviPQb3WqUHn+v8OE/vSs/SgRQV72E8tZErxi4Rqz3txl07j+6ULpUAgGfLaM4E31300hT7fgaEdgIBuAeuKZl8oa/heZZqa+yqkl8lPxJj4rG96qTeOx86u97+PFVnShto44UOeiVK4AQJFdbsMUbs9lX8Uix8n+GHwjdLTds43pK1VtK850PFTCecPP59p536O32WwcG/J7DJY2FKkSt4X7Hrjqa4kdJoFp8qGVgwh2FTU+W5E632aJI+yanQi1zTAycb/PbsguXryQ13wV+5biT8dcY9PuG4Q9lZ0B0MteoL97FNMYcQLP9O5HdHywNxYKuuCf7tVLY7LefW2VgiSArAeSLe4m0ykw9ITGCNW4+oeqtWpvRm/59Lgx2J4UM5QHD1qK3EiogKB/dVimDzByr3QmPegtrsfqtTBYxqH4ZrutAf/a/rSvFZEoeFacICAdHMTDXZtxZ2OZphi5kIgJNgMjWVmxHer5MiHuUcpux+A8KJF+9sUR3aNNrimYQC/vm6uwNi+TCPV2mzdeLn5lAxmHXhy3+9xyfGxV/AQtVGIioNAit7Bn9WBcfsx/E09gqXDpf514FO7nGuDqWbpP/eqxs0X07aCCXBQf1kkf3km+jhWMYB+gpR2b8NuchZlQIshSswyKJanKYAASeu/KjqXc8KsUXZnuGn2DmhbCt9FvypXbc4N+44C9fyiYAr8EyL4gZEvXQeTgnprYMt6UWeoV7u7ReuBv5ZMuhV7WeTQlMFQlxcOglW7kOr7uGzNOk7Pd9yJVU9QxCI0XFi4XhGF2hFzTT1Awl+LrntlksVn1r8AyILBiR4qxsQKP5YLUCE9nDHuSe43iS69eSlJ8jEcANNNOQKmCBrzkB6Ejblvyv7MjfgRrH5c9fzDEv2/IHGkmvGQ7CJCBlyxEJrCb5aoLTiuL7BudUmLmRZJP3s3+zChLV9wJzhNE/SAYa48zTOHzPtjzf8R8u5c2ZXPj3MxWzsBBdAYkGpbSdybPGEwUjrmjZ26++WliNwHmLpaABgod5Bj5bdxl9ipfRMsqLpKtRj5sGppzy81Khb6kV9tUUY+fdGlxj3AR4ke5Fqw7V9JpH3yyVa3jNhMM/fCBKHa6/+94Wj+FcF38nfpQpsT7/iTUm8/uTzrw3vvalRvmjgjZGO2qIL7nrKJvOkxJfres1VAT2R0ETJa8OUFZhbA+H7EHWZV8jUwHPFLpMlhVsNyy8ec2TlmoLt+DcaEIBPhY07VPgSY+CIsJlfvbRRRLBKnNUZ3BMXyeOEEfjA9ywlIjKnWosNQ4mV+Q6SuXa1ocNY3d/9Ph3huGnom7EYbGZrIAAAAA==